• Opto-Electronic Engineering
  • Vol. 49, Issue 7, 210448 (2022)
Deqiang Cheng1,2, Yangyang You2, Qiqi Kou3,*, and Jinyang Xu2
Author Affiliations
  • 1Engineering Research Center of Underground Space Intelligent Control, Ministry of Education, Xuzhou, Jiangsu 221000, China
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221000, China
  • 3School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221000, China
  • show less
    DOI: 10.12086/oee.2022.210448 Cite this Article
    Deqiang Cheng, Yangyang You, Qiqi Kou, Jinyang Xu. A generative adversarial network incorporating dark channel prior loss used for single image defogging[J]. Opto-Electronic Engineering, 2022, 49(7): 210448 Copy Citation Text show less
    References

    [6] Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of the SeventhIEEEInternationalConferenceonComputerVision, Kerkyra, 1999: 820–827.

    [9] Meng G F, Wang Y, Duan J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of 2013IEEEInternationalConferenceonComputerVision, Sydney, 2013: 617–624.

    [14] Wang S, Chen J Y. Single image dehazing using dark channel fusion and dark channel confidence[C]//Proceedings of 2020InternationalConferenceonBigData&ArtificialIntelligence&SoftwareEngineering, Bangkok, 2020: 439–444.

    [15] Ren W Q, Liu S, Zhang H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of the14thEuropeanConferenceonComputerVision, Amsterdam, 2016: 154–169.

    [17] Li B Y, Peng X L, Wang Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of 2017IEEEInternationalConferenceonComputerVision, Venice, 2017: 4780–4788.

    [18] Chen D D, He M M, Fan Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of 2019IEEEWinterConferenceonApplicationsofComputerVision, Waikoloa, 2019: 1375–1383.

    [19] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014: 2672–2680.

    [20] Li R D, Pan J S, Li Z H, et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of 2018IEEE/CVFConferenceonComputerVisionandPatternRecognition, Salt Lake City, 2018: 8202–8211.

    [21] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14thEuropeanConferenceonComputerVision, Amsterdam, 2016: 694–711.

    [22] Engin D, Genc A, Ekenel H K. Cycle-dehaze: enhanced CycleGAN for single image dehazing[C]//Proceedings of 2018IEEE/CVFConferenceonComputerVisionandPatternRecognition Workshops, Salt Lake City, 2018: 939–946.

    [23] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017IEEEInternationalConferenceonComputerVision, Venice, 2017: 2242–2251.

    [25] Pan J S, Sun D Q, Pfister H, et al. Blind image deblurring using dark channel prior[C]//Proceedings of 2016IEEEConferenceonComputerVisionandPatternRecognition, Las Vegas, 2016: 1628–1636.

    [27] Shen Z Y, Lai W S, Xu T F, et al. Deep semantic face deblurring[C]//Proceedings of 2018IEEE/CVFConferenceonComputerVisionandPatternRecognition, Salt Lake City, 2018: 8260–8269.

    [28] Tao X, Gao H Y, Shen X Y, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of 2018IEEE/CVFConferenceonComputerVisionandPatternRecognition, Salt Lake City, 2018: 8174–8182.

    [29] Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of 2017IEEEConferenceonComputerVisionandPatternRecognition, Honolulu, 2017: 257–265.

    [30] Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of 2017IEEEConferenceonComputerVisionandPatternRecognition, Honolulu, 2017: 5967–5976.

    [31] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEEConferenceonComputerVisionandPatternRecognition, Honolulu, 2017: 105–114.

    [32] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016IEEEConferenceonComputerVisionandPatternRecognition, Las Vegas, 2016: 770–778.

    [34] Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 12thEuropeanConferenceonComputerVision, Florence, 2012.

    [35] Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light[C]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, 2003: I-I.

    [36] Beijing realtime weather photos[EB/OL]. (2022-06). https://www.tour-beijing.com/real_time_weather_photo/.

    [38] Hambarde P, Dudhane A, Patil P W, et al. Depth estimation from single image and semantic prior[C]//Proceedings of 2020IEEEInternationalConferenceonImageProcessing, Abu Dhabi, 2020: 1441–1445.

    [40] Ancuti C, Ancuti C O, De Vleeschouwer C, et al. D-HAZY: a dataset to evaluate quantitatively dehazing algorithms[C]//Proceedings of 2016IEEEInternationalConferenceonImageProcessing, Phoenix, 2016: 2226–2230.

    [41] Zhang Y F, Ding L, Sharma G. HazeRD: an outdoor scene dataset and benchmark for single image dehazing[C]//Proceedings of 2017IEEEInternationalConferenceonImageProcessing, Beijing, 2017: 3205–3209.

    Deqiang Cheng, Yangyang You, Qiqi Kou, Jinyang Xu. A generative adversarial network incorporating dark channel prior loss used for single image defogging[J]. Opto-Electronic Engineering, 2022, 49(7): 210448
    Download Citation