• Journal of Semiconductors
  • Vol. 45, Issue 4, 040201 (2024)
Zhihao Tao1, Yuxuan Song1, Baochang Wang1, Guoqing Tong1,*, and Liming Ding2,**
Author Affiliations
  • 1School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
  • 2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/45/4/040201 Cite this Article
    Zhihao Tao, Yuxuan Song, Baochang Wang, Guoqing Tong, Liming Ding. Chemical vapor deposition for perovskite solar cells and modules[J]. Journal of Semiconductors, 2024, 45(4): 040201 Copy Citation Text show less
    References

    [1] H Zhang, N Park. Towards sustainability with self-healing and recyclable perovskite solar cells. eScience, 2, 567(2022).

    [2] T Nie, Z Fang, X Ren et al. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett, 15, 70(2023).

    [3] Y Zhang, Y Li. Interface materials for perovskite solar cells. Rare Met, 40, 2993(2021).

    [4] Q Guo, C Wang, T Hayat et al. Recent advances in perovskite/organic integrated solar cells. Rare Met, 40, 2763(2021).

    [5] Y Mo, C Wang, X Zheng et al. Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. Interdiscip Mater, 1, 309(2022).

    [6] L Zhang, H Li, K Zhang et al. Major strategies for improving the performance of perovskite solar cells. iEnergy, 2, 172(2023).

    [7] L Zhang, X Pan, L Liu et al. Star perovskite materials. J Semicond, 43, 030203(2022).

    [9] S Wang, P Wang, B Chen et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience, 2, 339(2022).

    [10] H Kanda, V Mihailetchi, M Gueunier-Farret et al. Three-terminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions. Interdiscip Mater, 1, 148(2022).

    [11] L Zhang, L Mei, K Wang et al. Advances in the application of perovskite materials. Nano-Micro Lett, 15, 177(2023).

    [12] G Tong, L Ono, Y Liu et al. Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett, 13, 155(2021).

    [13] H Li, M Liu, M Li et al. Applications of vacuum vapor deposition for perovskite solar cells: A progress review. iEnergy, 1, 434(2022).

    [14] G Zheng, L Li, L Wang et al. The investigation of an amidine-based additive in the perovskite films and solar cells. J Semicond, 38, 014001(2017).

    [15] J Lee, K Lee, K Kim et al. Vacuum-processed perovskite solar cells: materials and methods. Solar RRL, 6, 2200623(2022).

    [16] M Tavakoli, L Gu, Y Gao et al. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method.. Sci Rep, 5, 14083(2015).

    [17] G Tong, X Geng, Y Yu et al. Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Adv, 7, 18224(2017).

    [18] G Tong, M Jiang, D Son et al. 2D derivative phase induced growth of 3D all inorganic perovskite micro-nanowire array based photodetectors. Adv Funct Mater, 30, 2002526(2020).

    [19] L Ono, M Leyden, S Wang et al. Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A, 4, 6693(2016).

    [20] J Yin, H Qu, J Cao et al. Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. J Mater Chem A, 4, 13203(2016).

    [21] G Tong, J Zhang, T Bu et al. Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv Energy Mater, 13, 2300153(2023).

    [22] L Qiu, S He, Z Liu et al. Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. J Mater Chem A, 8, 23404(2020).

    [23] M Leyden, L Ono, S Raga et al. High performance perovskite solar cells by hybrid chemical vapor deposition. J Mater Chem A, 2, 18742(2014).

    [24] P Lou, Z Liu, W Xia et al. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl Mater Interfaces, 7, 2708(2015).

    [25] G Tong, H Li, G Li et al. Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy, 48, 536(2018).

    [26] Y Jiang, S He, L Qiu et al. Perovskite solar cells by vapor deposition based and assisted methods. Appl Phys Rev, 9, 021305(2022).

    [27] L Qiu, S He, Y Jiang et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J Mater Chem A, 7, 6920(2019).

    [28] Y Jiang, M Remeika, Z Hu et al. Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Adv Energy Mater, 9, 1803047(2019).

    [29] L Qiu, Z Liu, L Ono et al. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv Funct Mater, 29, 1806779(2018).

    [30] X Li, J Sun, B Li et al. Managing excess PbI2 for efficient perovskite solar cells. J Semicond, 44, 080202(2023).

    [31] T Zhang, M Yang, Y Zhao et al. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett, 15, 3959(2015).

    [32] G Tumen-Ulzii, C Qin, D Klotz et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 32, 1905035(2020).

    [33] G Tong, X Lan, Z Song et al. Surface-activation modified perovskite crystallization for improving photovoltaic performance. Mater Today Energy, 5, 173(2017).

    [34] L Qiu, S He, Y Jiang et al. Metal halide perovskite solar cells by modified chemical vapor deposition. J Mater Chem A, 9, 22759(2021).

    [35] L Qiu, L Ono, Y Jiang et al. Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells. J Phys Chem B, 122, 511(2018).

    Zhihao Tao, Yuxuan Song, Baochang Wang, Guoqing Tong, Liming Ding. Chemical vapor deposition for perovskite solar cells and modules[J]. Journal of Semiconductors, 2024, 45(4): 040201
    Download Citation