• Photonics Research
  • Vol. 7, Issue 3, 325 (2019)
Qianyi Mu1, Fei Fan1、2、3、*, Sai Chen4, Shitong Xu1, Chuanzhong Xiong1, Xin Zhang1, Xianghui Wang1, and Shengjiang Chang1、2、5
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • 3State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 4Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
  • 5e-mail: sjchang@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000325 Cite this Article Set citation alerts
    Qianyi Mu, Fei Fan, Sai Chen, Shitong Xu, Chuanzhong Xiong, Xin Zhang, Xianghui Wang, Shengjiang Chang. Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure[J]. Photonics Research, 2019, 7(3): 325 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol., 5, 223-229(2015).

    [3] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814-819(2014).

    [4] Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, J. Han. Polarization and frequency multiplexed terahertz meta-holography. Adv. Opt. Mater., 5, 1700277(2017).

    [5] Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, H. Yang. Graphene terahertz modulators by ionic liquid gating. Adv. Mater., 27, 1874-1879(2015).

    [6] V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, Y. Koucheryavy. Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Trans. Wireless Commun., 16, 1791-1808(2017).

    [7] C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, K. J. Weatherill. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 11, 40-43(2017).

    [8] K. S. Reichel, R. Mendis, D. M. Mittleman. A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep., 6, 28925(2016).

    [9] J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, S.-J. Chang. Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field. Opt. Express, 26, 663-673(2018).

    [10] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, H.-T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [11] F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, A.-Q. Chen. Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics. IEEE Photon. Technol. Lett., 24, 2080-2083(2012).

    [12] T. Arikawa, X. Wang, A. A. Belyanin, J. Kono. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Opt. Express, 20, 19484-19492(2012).

    [13] F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, L. Lin. Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals. Appl. Phys. Lett., 103, 161115(2013).

    [14] S. Chen, F. Fan, X. He, M. Chen, S. Chang. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing. Appl. Opt., 54, 9177-9182(2015).

    [15] M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti. A magnetic non-reciprocal isolator for broadband terahertz operation. Nat. Commun., 4, 1558(2013).

    [16] M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti. Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid. Appl. Phys. Lett., 100, 241107(2012).

    [17] M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, R. Morandotti. Terahertz magnetic modulator based on magnetically clustered nanoparticles. Appl. Phys. Lett., 105, 151108(2014).

    [18] A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, L. Molenkamp. Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range. Phys. Rev. Lett., 106, 107404(2011).

    [19] A. Fallahi, J. Perruisseau-Carrier. Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett., 101, 231605(2012).

    [20] M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, J. Perruisseau-Carrier. Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun., 7, 11216(2016).

    [21] J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, A. B. Kuzmenko. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun., 8, 14626(2017).

    [22] B. Hu, Q. J. Wang, Y. Zhang. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. Opt. Lett., 37, 1895-1897(2012).

    [23] B. Hu, Q. J. Wang, Y. Zhang. Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons. Opt. Express, 20, 10071-10076(2012).

    [24] P. Kumar, M. Kumar, V. Tripathi. Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb. Opt. Lett., 41, 1408-1411(2016).

    [25] B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, D. P. Tsai. Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution. Sci. Rep., 5, 18172(2015).

    [26] X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, J. Kono. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nat. Phys., 6, 126-130(2010).

    [27] J. Chochol, K. Postava, M. Čada, J. Pištora. Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application. Sci. Rep., 7, 13117(2017).

    [28] S. Lin, S. Silva, J. Zhou, D. Talbayev. A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics. Adv. Opt. Mater., 6, 1800572(2018).

    [29] F. Fan, S. Chen, X. Wang, S. Chang. Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens. Opt. Express, 21, 8614-8621(2013).

    [30] S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, S. Chang. Terahertz isolator based on nonreciprocal magneto-metasurface. Opt. Express, 23, 1015-1024(2015).

    [31] S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, S. A. Maier. Broadband terahertz plasmonic response of touching InSb disks. Adv. Mater., 24, OP226-OP230(2012).

    [32] L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon. Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings. Adv. Opt. Mater., 1, 128-132(2013).

    [33] M. Oszwałldowski, M. Zimpel. Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb. J. Phys. Chem. Solids, 49, 1179-1185(1988).

    [34] K. Zhang, D. Li. Electromagnetic Theory for Microwaves and Optoelectronics, 475-576(2008).

    Qianyi Mu, Fei Fan, Sai Chen, Shitong Xu, Chuanzhong Xiong, Xin Zhang, Xianghui Wang, Shengjiang Chang. Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure[J]. Photonics Research, 2019, 7(3): 325
    Download Citation