• Laser & Optoelectronics Progress
  • Vol. 54, Issue 10, 100001 (2017)
Zhang Xiaofeng*, Wang Min, and Wang Jin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.100001 Cite this Article Set citation alerts
    Zhang Xiaofeng, Wang Min, Wang Jin. Research Status and Development of Indoor Positioning Based on Visible Light Communication[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100001 Copy Citation Text show less
    References

    [1] Liu X, Yang A Y, Wang Y, et al. Combination of light-emitting diode positioning identification and time-division multiplexing scheme for indoor location-based service[J]. Chinese Optics Letters, 2015, 13(12): 120601.

    [2] Hussein A T, Alresheedi M T, Elmirghani J M H. 20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms[J]. Journal of Lightwave Technology, 2015, 33(24): 5242-5260.

    [3] Tiwari S V, Sewaiwar A, Chung Y H. Optical bidirectional beacon based visible light communications[J]. Optics Express, 2015, 23(20): 26551-26564.

    [4] Zhang Yufei, Zhang Hongming, Wang Peng, et al. Long-distance wireless optical communication using source[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050602.

    [5] Xu Xiao, Chen Mingsong, Tang Lingli. Experimental study based on RGB LED visible light communication[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100601.

    [6] Mostafa A, Lampe L. Optimal and robust beamforming for secure transmission in MISO visible-light communication links[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6501-6516.

    [7] Xu Y F, Zhao J Q, Shi J Y, et al. Reversed three-dimensional visible light indoor positioning utilizing annular receivers with multi-photodiodes[J]. Sensors, 2016, 16(8): 1254.

    [8] Hossen M S, Park Y, Kim K. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication[J]. Optical Engineering, 2015, 54(4): 0451014.

    [9] Moon M, Choi S, Park J, et al. Indoor positioning system using LED lights and a dual image sensor[J]. Journal of the Optical Society of Korea, 2015, 19(6): 586-591.

    [10] Nakazawa Y, Makino H, Nishimori K, et al. Indoor positioning using a high-speed, fish-eye lens-equipped camera in visible light communication[C]. International Conference on Indoor Positioning and Indoor Navigation, 2013: 14319173.

    [11] Guan Yang, Sun Dedong, Yin Shugang, et al. High precision visible light indoor positioning based on image communication[J]. Chinese J Lasers, 2016, 43(12): 1206001.

    [12] Hou Wenzuo, Wang Daming, Yang Yang. New method of indoor high accuracy imaging positioning based on LED light source[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060606.

    [13] Bai Bo, Tian Hua, Li Xiaobo. Wireless positioning algorithm based on emitting diode lights and camera calibration[J]. Chinese J Lasers, 2015, 42(2): 0205003.

    [14] Arafa A, Dalmiya S, Klukas R, et al. Angle-of-arrival reception for optical wireless location technology[J]. Optics Express, 2015, 23(6): 7755-7766.

    [15] Elkarim M A, Mohammed N A, Aly M H. Exploring the performance of indoor localization systems based on VLC-RSSI, including the effect of NLOS components using two light-emitting diode lighting systems[J]. Optical Engineering, 2015, 54(10): 105110.

    [16] Steendam H, Wang T Q, Armstrong J. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and anaperture-based receiver[J]. Journal of Lightwave Technology, 2017, 35(2): 309-319.

    [17] Zhai C Y, Deng Z L, Jiao J C, et al. Dynamic weighted data fusion algorithm based on TDOA/RSSI for indoor location[C]. China Satellite Navigation Conference (CSNC) Proceedings, 2016: 365-374.

    [18] Gaber A, Omar A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D Matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440-2454.

    [19] Yoo M. Enhanced VLC-TDO Aalgorithm for indoor positioning without LED-ID[J]. The Journal of the Korean Institute of Communication Science B, 2013, 38(8): 672-678.

    [20] Krommenacker N, Vasquez O C, Alfaro M D, et al. A self-adaptive cell-ID positioning system based on visible light communications in underground mines[C]. IEEE International Conference on Automatica (ICA-ACCA), 2016: 16525691.

    [21] Huang Jiyang, Meng Jun, Zhang Ran. Three-dimensional indoor positioning technology based on characteristic light source[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(7): 1393-1401.

    [22] Eroglu Y S, Guvenc I, Pala N, et al. AOA-based localization and tracking in multi-element VLC systems[C]. IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 2015: 15201591.

    [23] Wu Nan, Wang Xudong, Hu Qingqing, et al. Multiple LED based high accuracy indoor visible light positioning scheme[J]. Journal of Electronics and Information Technology, 2015, 37(3): 727-732.

    [24] Wang Li, Guo Maotian, Tian Hui. A visible light communication light source layout model and performance analysis[J]. Laser Journal, 2016, 37(3): 92-94.

    [25] Hao H G, Zhang D D, Tang S. Analysis of the LED lamp arrangement for uniformity of illumination in indoor VLC system[J]. Journal of the Optical Society of Korea, 2014, 18(6): 663-671.

    [26] Gu W, Zhang W, Wang J, et al. Three dimensional indoor positioning based on visible light with Gaussian mixture Sigma-point particle filter technique[C]. SPIE, 2015, 9387: 93870O.

    [27] Mousa F I K, Hoa L, Ghassemlooy Z, et al. Indoor localization system utilizing two visible light emitting diodes[J]. Optical Engineering, 2016, 55(11): 116114.

    [28] Ding J P, Huang Z T, Ji Y F. Evolutionary algorithm based power coverage optimization for visible light communications[J]. IEEE Communications Letters, 2012, 16(4): 439-441.

    [29] De Lausnay S, De Strycker L, Goemaere J, et al. A survey on multiple access visible light positioning[C]. IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EMERGITECH), 2016: 38-42.

    [30] Huang H, Feng L, Guo P, et al. Iterative positioning algorithm to reduce the impact of diffuse reflection on an indoor visible light positioning system[J]. Optical Engineering, 2016, 55(6): 066117.

    [31] Mmbaga P F, Thompson J, Haas H. Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors[J]. Journal of Lightwave Technology, 2016, 34(4): 1254-1266.

    [32] Guan W, Wu Y, Wen S, et al. High precision three-dimensional iterative indoor localization algorithm using code division multiple access modulation based on visible light communication[J]. Optical Engineering, 2016, 55(10): 106105.

    [33] Kizilirmak R C. Impact of repeaters on the performance of indoor visible light communications[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2015, 23(4): 1159-1172.

    [34] Xiang Y, Zhang M, Kavehrad M, et al. Multiband channel characteristics for indoor visible light communications[J]. Optical Engineering, 2014, 53(10): 106101.

    [35] Cai H, Zhang J, Zhu Y, et al. Optimal constellation design for indoor 2×2 MIMO visible light communications[J]. IEEE Communications Letters, 2016, 20(2): 264-267.

    [36] Yang S, Kwon D, Kim S, et al. Overcoming bandwidth limitation of light-emitting diode in visible light communication using differential pulse amplitude modulation[J]. Optical Engineering, 2015, 54(12): 126102.

    [37] Al-Moliki Y M, Alresheedi M T, Al-Harthi Y. Robust key generation from optical OFDM signal in indoor VLC networks[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2629-2632.

    [38] Karunatilaka D, Kalavally V, Parthiban R. Improving lighting quality and capacity of OFDM based WDM-VLC systems[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2149-2152.

    [39] Yang F, Gao J, Liu S. Novel visible light communication approach based on hybrid OOK and ACO-OFDM[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1585-1588.

    [40] Xie G, Yu H, Zhu Y, et al. A linear receiver for visible light communication systems with phase modulated OFDM[J]. Optics Communications, 2016, 371: 112-116.

    [41] Gu W, Aminikashani M, Deng P, et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 2016, 34(10): 2578-2587.

    [42] Kim D, Yang S, Kim H, et al. Frequency optimization for visible light communication based on carrier allocation in offset OFDM[J]. Microwave and Optical Technology Letters, 2014, 56(6): 1431-1437.

    [43] Chen C, Ijaz M, Tsonev D, et al. Analysis of downlink transmission in DCO-OFDM based optical attocell networks[C]. IEEE Global Communications Conference, 2014: 2072-2077.

    [44] Bouchet O, Perrufel M, Topsu S, et al. Acemind new indoor full duplex optical wireless communication prototype[C]. SPIE, 2016, 9979: 9979OF.

    [45] He C, Wang T Q, Armstrong J. Performance of optical receivers using photodetectors with different fields of view in a MIMO ACO-OFDM system[J]. Journal of Lightwave Technology, 2015, 33(23): 4957-4967.

    [46] Song J, Ding W B, Yang F, et al. An indoor broadband broadcasting system based on PLC and VLC[J]. IEEE Transactions on Broadcasting, 2015, 61(2): 299-308.

    [47] Aminikashani M, Gu W, Kavehrad M. Indoor positioning with OFDM visible light communications[C]. IEEE Annual Consumer Communications & Networking Conference (CCNC), 2016: 505-510.

    [48] Aminikashani M, Gu W, Kavehrad M. Indoor location estimation with optical-based orthogonal frequency division multiplexing communications[J]. Optical Engineering, 2016, 55(5): 056116.

    [49] Odeyemi K O, Owolawi P A, Srivastava V M. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence[J]. Optics Communications, 2017, 382: 205-211.

    [50] Yasir M, Ho S, Vellambi B N. Indoor position tracking using multiple optical receivers[J]. Journal of Lightwave Technology, 2016, 34(4): 1166-1176.

    [51] Li Chunming, Wang Yanpeng, Qin Xiaoxiang. Adaptive diversity receiving technology for indoor visible light communication[J]. Computer Engineering and Design, 2016, 37(5): 1161-1165.

    [52] Guan Weipeng, Wu Yuxiang, Wen Shangsheng, et al. Indoor positioning technology of visible light communication based on CDMA modulation[J]. Acta Optica Sinica, 2016, 36(11): 1106006.

    [53] Kim J, Kang S, Lee S. VLC-based location data transferal for smart devices[J]. Optical Switching and Networking, 2017, 23: 250-258.

    [54] Nuwanpriya A, Ho S, Chen C S. Indoor MIMO visible light communications:Novel angle diversity receivers for mobile users[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(9): 1780-1792.

    [55] Ngoc-Tan N, Suebsomran A, Sripimanwat K, et al. Design and simulation of a novel indoor mobile robot localization method using a light-emitting diode positioning system[J]. Transactions of the Institute of Measurement and Control, 2016, 38(3): 305-314.

    [56] Kim J Y, Kim J S, Kang G T, et al. An indoor positioning system for mobile robots using visible light communication and fuzzy logic[J]. Journal of Institute of Control, Robotics and Systems, 2016, 22(2): 75-82.

    [57] Yasir M, Ho S, Vellambi B N. Indoor positioning system using visible light and accelerometer[J]. Journal of Lightwave Technology, 2014, 32(19): 3306-3316.

    [58] Huynh P, Yoo M. VLC-based positioning system for an indoor environment using an image sensor and an accelerometer sensor[J]. Sensors, 2016, 16(6): 783.

    [59] Ding W B, Yang F, Yang H, et al. A hybrid power line and visible light communication system for indoor hospital applications[J]. Computers in Industry, 2015, 68: 170-178.

    [60] Keon Y Y. Development of a localization system based on VLC technique for an indoor environment[J]. Journal of Electrical Engineering and Technology, 2015, 10(1): 436-442.

    [61] Guzman G B, Serrano L A, Jimenez V P G. Cooperative optical wireless transmission for improving performance in indoor scenarios for visible light communications[J]. IEEE Transactions on Consumer Electronics, 2015, 61(4): 393-401.

    CLP Journals

    [1] Wenjie Dong, Xudong Wang, Nan Wu. A Hybrid RSS/AOA Algorithm for Indoor Visible Light Positioning[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050603

    Zhang Xiaofeng, Wang Min, Wang Jin. Research Status and Development of Indoor Positioning Based on Visible Light Communication[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100001
    Download Citation