• Photonics Research
  • Vol. 6, Issue 3, 182 (2018)
Pengfei Zhang1、3、*, Gang Song1、2、*, and Li Yu1
Author Affiliations
  • 1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2e-mail: songgangbupt@163.com
  • 3e-mail: pfzhang1980@gmail.com
  • show less
    DOI: 10.1364/PRJ.6.000182 Cite this Article Set citation alerts
    Pengfei Zhang, Gang Song, Li Yu. Optical trapping of single quantum dots for cavity quantum electrodynamics[J]. Photonics Research, 2018, 6(3): 182 Copy Citation Text show less
    References

    [1] C. Monroe. Quantum information processing with atoms and photons. Nature, 416, 238-246(2002).

    [2] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, J. Vučković. Controlled phase shifts with a single quantum dot. Science, 320, 769-772(2008).

    [3] T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, M. Lončar. A diamond nanowire single-photon source. Nat. Nanotechnol., 5, 195-199(2010).

    [4] V. Vuletic. All-optical switch and transistor gated by one photon. Science, 341, 768-770(2013).

    [5] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [6] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 345, 903-906(2014).

    [7] H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scripta, T76, 127-137(1998).

    [8] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314-3317(1992).

    [9] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197-200(2004).

    [10] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896-899(2007).

    [11] J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, J. Estève. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity. New J. Phys., 15, 045002(2012).

    [12] J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404(2004).

    [13] N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, N. J. Halas. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. Nano Lett., 8, 3481-3487(2008).

    [14] J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B, 71, 035424(2005).

    [15] R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [16] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [17] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [18] S. Kühn, U. HåKanson, L. Rogobete, V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97, 017402(2006).

    [19] S. Schietinger, M. Barth, T. Aichele, O. Benson. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett., 9, 1694-1698(2009).

    [20] K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, V. Sandoghdar. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Sci. Rep., 7, 42307(2017).

    [21] M. P. Busson, S. Bidault. Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity. Nano Lett., 14, 284-288(2014).

    [22] P. Zhang, L. Kong, P. Setlow, Y. Q. Li. Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells. Opt. Lett., 35, 3321-3323(2010).

    [23] L. Novotny, R. X. Bian, X. S. Xie. Theory of nanometric optical tweezers. Phys. Rev. Lett., 79, 645-648(1997).

    [24] S. Lin, W. Zhu, Y. Jin, K. B. Crozier. Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. Nano Lett., 13, 559-563(2013).

    [25] M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, R. Quidant. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915-919(2009).

    [26] Y. Pang, R. Gordon. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett., 11, 3763-3767(2011).

    [27] R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, M. G. Bawendi. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photon., 3, 423-427(2016).

    [28] E. D. Palik, E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [29] Y. Harada, T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun., 124, 529-541(1996).

    Pengfei Zhang, Gang Song, Li Yu. Optical trapping of single quantum dots for cavity quantum electrodynamics[J]. Photonics Research, 2018, 6(3): 182
    Download Citation