• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 4, 1137 (2020)
LI Xiao-pei1、*, ZHANG Yong-jie2, and XUE Li-zhen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)04-1137-06 Cite this Article
    LI Xiao-pei, ZHANG Yong-jie, XUE Li-zhen. Application of Two-Trace Two-Dimensional Asynchronous Correlation Spectroscopy in Characterizing Intermolecular Interactions: A Feasibility Study[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1137 Copy Citation Text show less

    Abstract

    Two-trace two-dimensional (2T2D) asynchronous correlation spectroscopy is a new method of generating two-dimensional asynchronous correlation spectroscopy based on a pair of one-dimensional (1D) spectra. Compared with the conventional two-dimensional asynchronous correlation spectroscopy where at least three 1D spectra are needed, 2T2D asynchronous correlation spectroscopy makes the experiment easier, and is a better method for the expensive samples. In the present paper, the feasibility of using 2T2D asynchronous correlation spectroscopy to characterize intermolecular interactions was explored. Firstly, a model system containing two solutes P and Q were set up. P possessed a characteristic peak, and Q had no characteristic peaks. The mathematical analysis demonstrated that the intensity of 2T2D asynchronous correlation spectra was always zero when the initial concentrations of P and Q were set incorrectly. Furthermore, the variations of the absorptivity induced by intermolecular interactions could not be discerned by 2T2D-asynchronous correlation spectra. Therefore, incorrect results may be obtained when 2T2D asynchronous correlation spectroscopy is adopted to characterize intermolecular interactions. In order to develop 2T2D asynchronous correlation spectroscopy into a reliable method for characterizing intermolecular interactions, the setting method of the initial concentrations of P and Q in the 2T2D asynchronous correlation spectroscopy was first studied. The case that the intensity of 2T2D asynchronous correlation spectra was always zero induced by incorrectly setting the initial concentrations of P and Q could be avoided when the initial concentrations of P and Q satisfied the requirement of Eq.(6) in the text. On this basis, the 2T2D-asynchronous correlation spectroscopy with auxiliary cross peaks (ASAP-2T2D-asynchronous correlation spectroscopy) was developed by introducing a virtual substance S with an isolated peak and proper concentration into the research system to solve the problem that 2T2D-asynchronous correlation spectra could not reflect the variations of the absorptivity induced by intermolecular interactions. The results of computer simulation experiments demonstrated that the ASAP-2T2D-asynchronous correlation spectra could correctly reflect the variation of the peak position, bandwidth and absorptivity indicating that the ASAP-2T2D-asynchronous correlation spectroscopy was a reliable method for characterizing intermolecular interactions. Finally, the ASAP-2T2D-asynchronous correlation spectroscopy was adopted to characterize the intermolecular interaction between Li+ and benzo-15-crown-5 (BC). The results demonstrated that the variation of the peak position and absorptivity of the characteristic peak of BC could be reflected by the ASAP-2T2D-asynchronous correlation spectrum. These results further confirmed that the ASAP-2T2D-asynchronous correlation spectroscopy could correctly characterize intermolecular interactions.
    LI Xiao-pei, ZHANG Yong-jie, XUE Li-zhen. Application of Two-Trace Two-Dimensional Asynchronous Correlation Spectroscopy in Characterizing Intermolecular Interactions: A Feasibility Study[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1137
    Download Citation