[1] D Huang, E A Swanson, C P Lin et al. Optical coherence tomography. Science, 254, 1178-1181(1991).
[2] J G Fujimoto. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol, 21, 1361-1367(2003).
[3] Y F Liu, Y Su, X T Yao et al. An optimization method of image processing for OCT non-invasive blood glucose detection. Laser Technol, 47, 178-184(2023).
[4] M K Farazdaghi, K B Ebrahimi. Role of the choroid in age-related macular degeneration: a current review. J Ophthalmic Vis Res, 14, 78-87(2019).
[5] W Choi, E M Moult, N K Waheed et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology, 122, 2532-2544(2015).
[6] B Potsaid, B Baumann, D Huang et al. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100, 000 to 400, 000 axial scans per second. Opt Express, 18, 20029-20048(2010).
[7] Y Y Li, J Y Fan, T L Jiang et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery. Opto-Electron Eng, 50, 220027(2023).
[8] A F Fercher, C K Hitzenberger, G Kamp et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun, 117, 43-48(1995).
[9] Boer J F de, B Cense, B H Park et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett, 28, 2067-2069(2003).
[10] M A Choma, M V Sarunic, C Yang et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express, 11, 2183-2189(2003).
[11] L An, P Li, T T Shen et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second. Biomed Opt Express, 2, 2770-2783(2011).
[12] O P Kocaoglu, T L Turner, Z L Liu et al. Adaptive optics optical coherence tomography at 1 MHz. Biomed Opt Express, 5, 4186-4200(2014).
[13] D H Choi, H Hiro-Oka, K Shimizu et al. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second. Biomed Opt Express, 3, 3067-3086(2012).
[14] R K Wang, L An. Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. J Biomed Opt, 16, 050503(2011).
[15] D Seong, D Jeon, R E Wijesinghe et al. Ultrahigh-speed spectral-domain optical coherence tomography up to 1-MHz a-scan rate using space–time-division multiplexing. IEEE Trans Instrum Meas, 70, 4504108(2021).
[16] A F Zuluaga, R Richards-Kortum. Spatially resolved spectral interferometry for determination of subsurface structure. Opt Lett, 24, 519-521(1999).
[17] L Han, Z Hosseiaee, B Tan et al. High resolution line-field SD-OCT with 2.5 kHz frame rate for cellular resolution imaging of biological tissue. Proc SPIE, 10867, 108672X(2019).
[18] S Lawman, S Mason, S B Kaye et al. Accurate in vivo bowman's thickness measurement using mirau ultrahigh axial resolution line field optical coherence tomography. Transl Vis Sci Technol, 11, 6(2022).
[19] Y Shen, Z Y Chen, J R Qiu et al. Research progress on parallel spectral domain optical coherence tomography technology. Chin J Lasers, 45, 0207004(2018).
[20] Y Nakamura, S Makita, M Yamanari et al. High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. Opt Express, 15, 7103-7116(2007).
[21] B Grajciar, Y Lehareinger, A F Fercher et al. High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s. Opt Express, 18, 21841-21850(2010).
[22] W Drexler, J G Fujimoto. Optical Coherence Tomography: Technology and Applications(2008).
[23] C K Hitzenberger, A Baumgartner, W Drexler et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging. J Biomed Opt, 4, 144-151(1999).
[24] B J Huang, P Bu, X Z Wang et al. Optical coherence tomography based on depth resolved dispersion compensation. Acta Opt Sin, 32, 0217002(2012).
[25] D L Marks, A L Oldenburg, J J Reynolds et al. Autofocus algorithm for dispersion correction in optical coherence tomography. Appl Opt, 42, 3038-3046(2003).
[26] M Wojtkowski, V J Srinivasan, T H Ko et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express, 12, 2404-2422(2004).
[27] S Diddams, J C Diels. Dispersion measurements with white-light interferometry. J Opt Soc Am B, 13, 1120-1129(1996).
[28] K Wang, Z H Ding. Spectral calibration in spectral domain optical coherence tomography. Chin Opt Lett, 6, 902-904(2008).
[29] L H Pan, Z L Li, X Z Wang et al. Depth-dependent dispersion compensation for optical coherence tomography. Acta Opt Sin, 37, 0511002(2017).
[30] Y H Liu, Y M Liang, G G Mu et al. Deconvolution methods for image deblurring in optical coherence tomography. J Opt Soc Am A, 26, 72-77(2009).