• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 4, 2250024 (2022)
[in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2、*, [in Chinese]1、2, [in Chinese]3, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]3, [in Chinese]1、2, and [in Chinese]1、2
Author Affiliations
  • 1Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
  • 2Engineering Research Center of Molecular & Neuro Imaging of the Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, P. R. China
  • 3Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P. R. China
  • show less
    DOI: 10.1142/s1793545822500249 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Supercontinuum fiber laser-based coherent anti-Stokes Raman scattering microscopy for label-free chemical imaging[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2250024 Copy Citation Text show less
    References

    [1] G. I. Petrov, R. Arora, V. V. Yakovlev, "Coherent anti-Stokes Raman scattering imaging of microcalci fications associated with breast cancer," Analyst 146(4), 1253–1259 (2021).

    [2] H. Kano, H. Hamaguchi, "Coherent Raman imaging of human living cells using a supercontinuum light source," J. Appl. Phys. 46(10A), 6875–6877 (2007).

    [3] C. Zhang, D. Zhang, J. X. Cheng, "Coherent Raman scattering microscopy in biology and medicine," Annu. Rev. Biomed. Eng. 17, 415–445 (2015).

    [4] X. Y. Wang, L. Wang, P. Lin, H. Xie, X. Y. Xu, Q. Zeng, Y. H. Zhan, X. L. Chen, "Stimulation of stimulated Raman scattering signal generation in scattering tissue excited by Bessel beams," J. Innov. Opt. Health Sci. 14(3), 2150008 (2021).

    [5] H. Kano, H. Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Opt. Exp. 14(7), 2798–2804 (2006).

    [6] C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102(46), 16807–16812 (2005).

    [7] J. X. Cheng, X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108(3), 827–840 (2004).

    [8] F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31(9), 1292–1294 (2006).

    [9] S. H. Lim, A. G. Caster, S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev. A 72(4), 041803 (2005).

    [10] R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, "Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM)," J. Phys. Chem. B 106(34), 8489–8492 (2002).

    [11] H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Exp. 28(13), 1123–1125 (2003).

    [12] C. H. Camp, Jr., Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, "High-speed coherent Raman fingerprint imaging of biological tissues," Nat. Photon. 8(145), 627–634 (2014).

    [13] H. Kano, H. Hamaguchi, "Ultrabroadband (> 2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 86(12), 121113 (2005).

    [14] H. Kano, H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85(19), 4298–4300 (2004).

    [15] M. Okuno, H. Kano, P. Leproux, V. Couder, H. Hamaguchi, "Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source," Opt. Fiber. Technol. 18(5), 388–393 (2012).

    [16] Y. Li, X. S. Xiao, L. J. Kong, C. X. Yang, "Fiber supercontinuum source for broadband-CARS microspectroscopy based on a dissipative soliton laser," IEEE Photon. J. 9(4), 3900807 (2017).

    [17] Y. C. Kao, P. C. Ho, Y. K. Tu, I. M. Jou, K. J. Tsai, "Lipid and Alzheimer's disease," Int. J. Mol. Sci. 21(4), 1505 (2020).

    [18] R. J. Erckens, F. H. M. Jongsma, J. P. Wicksted, F. Hendrikse, W. F. March, M. Motamed, "Druginduced corneal hydration changes monitored in vivo by non-invasive confocal Raman spectroscopy," J. Raman Spectrosc. 32(9), 733–737 (2001).

    [19] H. N. Lin, H. J. Lee, N. Tague, J. B. Lugagne, C. Zong, F. Y. Deng, J. Shin, L. Tian, W. Wong, M. J. Dunlop, J. X. Cheng, "Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning," Nat. Commun. 12(1), 3052 (2021).

    [20] D. Lis, F. Cecchet, "Localized surfaced plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity," Beilstein J. Nanotechnol. 5, 2275–2292 (2015).

    [21] H. Li, Y. B. Cao, F. Lu, "Differentiation of different antifungals with various mechanisms using dynamic surface-enhanced Raman spectroscopy combined with machine learning," J. Innov. Opt. Health Sci. 14(4), 2141002 (2021).

    [22] J. N. Hu, X. G. Shao, C. F. Chi, Y. J. Zhu, Z. X. Xin, J. J. Sha, B. J. Dong, J. H. Pan, W. Xue, "Surfaceenhanced Raman spectroscopy of serum predicts sensitivity to docetaxel-based chemotherapy in patients with metastatic castration-resistant prostate cancer," J. Innov. Opt. Health Sci. 14(4), 2141006 (2021).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Supercontinuum fiber laser-based coherent anti-Stokes Raman scattering microscopy for label-free chemical imaging[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2250024
    Download Citation