• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207005 (2018)
Chen Xiao1、2, Lu Jinling1、2, and Li Pengcheng1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207005 Cite this Article Set citation alerts
    Chen Xiao, Lu Jinling, Li Pengcheng. Viscoelasticity Measurement of Biological Tissues Using Laser Speckle Techniques: a Review[J]. Chinese Journal of Lasers, 2018, 45(2): 207005 Copy Citation Text show less
    References

    [1] Kennedy B F, Wijesinghe P, Sampson D D. The emergence of optical elastography in biomedicine[J]. Nature Photonics, 11, 215-221(2017). http://www.nature.com/nphoton/journal/v11/n4/nphoton.2017.6/metrics

    [2] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4410708/

    [3] Nadkarni S K. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture[J]. Journal of Biomedical Optics, 18, 121507(2013). http://www.ncbi.nlm.nih.gov/pubmed/24296995

    [4] Urban M W, Chen S, Fatemi M. A review of shearwave dispersion ultrasound vibrometry (SDUV) and its applications[J]. Current Medical Imaging Reviews, 8, 27-36(2012). http://europepmc.org/articles/PMC3410660/

    [5] Sun C R, Standish B. Yang V X D. Optical coherence elastography: current status and future applications[J]. Journal of Biomedical Optics, 16, 043001(2011). http://europepmc.org/abstract/MED/21529067

    [6] Sarvazyan A, Hall T J, Urban M W. et al. An overview of elastography-an emerging branch of medical imaging[J]. Current Medical Imaging Reviews, 7, 255-282(2011). http://www.ncbi.nlm.nih.gov/pubmed/22308105/

    [7] Chao P Y, Li P C. Three-dimensional shear wave imaging based on full-field laser speckle contrast imaging with one-dimensional mechanical scanning[J]. Optics Express, 24, 18860-18871(2016). http://www.opticsinfobase.org/abstract.cfm?uri=oe-24-17-18860

    [8] Sarvazyan A P, Rudenko O V, Swanson S D. et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics[J]. Ultrasound in Medicine & Biology, 24, 1419-1435(1998). http://europepmc.org/abstract/med/10385964

    [9] Kennedy B F, Kennedy K M, Sampson D D. A review of optical coherence elastography: fundamentals, techniques and prospects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 0, 7101217(2014). http://ieeexplore.ieee.org/document/6670078/

    [10] Parker K J, Doyley M M, Rubens D J. Imaging the elastic properties of tissue: the 20 year perspective[J]. Physics in Medicine & Biology, 56, R1-R29(2011). http://www.ncbi.nlm.nih.gov/pubmed/21119234

    [11] Larin K V, Sampson D D. Optical coherence elastography-OCT at work in tissue biomechanics[Invited][J]. Biomedical Optics Express, 8, 1172-1202(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5330567/

    [12] Li S, Cheng Y, Eckersley R J. et al. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement[J]. Biomedical Optics Express, 6, 1954-1962(2015). http://europepmc.org/articles/PMC4473736

    [13] Kirkpatrick S J, Wang R K, Duncan D D et al. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography[J]. Optics Express, 14, 9770-9779(2006). http://www.opticsinfobase.org/abstract.cfm?uri=OE-14-21-9770

    [14] Hajjarian Z, Nadkarni S K. Evaluating the viscoelastic properties of tissue from laser speckle fluctuations[J]. Scientific Reports, 2, 316(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3306019/

    [15] Chen C G, Zhao Y, Yang S H. et al. Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy[J]. Biomedical Optics Express, 6, 4975-4980(2015). http://europepmc.org/abstract/MED/26713209

    [16] Li S G, Mohan K D, Sanders W W. et al. Toward soft-tissue elastography using digital holography to monitor surface acoustic waves[J]. Journal of Biomedical Optics, 16, 116005(2011). http://www.ncbi.nlm.nih.gov/pubmed/22112110

    [17] Liang X, Graf B W, Boppart S A. Imaging engineered tissues using structural and functional optical coherence tomography[J]. Journal of Biophotonics, 2, 643-655(2009). http://onlinelibrary.wiley.com/doi/10.1002/jbio.200910048/full

    [18] Ahmad A, Kim J, Sobh N A. et al. Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves[J]. Biomedical Optics Express, 5, 2349-2361(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4102369/

    [19] Rosado-Mendez I M, Palmeri M L, Drehfal L C et al. Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a rhesus macaque model[J]. Ultrasound in Medicine & Biology, 43, 790-803(2017). http://www.sciencedirect.com/science/article/pii/S0301562916304501

    [20] Urban M W, Nenadic I Z, Qiang B. et al. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation[J]. Journal of the Acoustical Society of America, 138, 2499-2507(2015). http://www.ncbi.nlm.nih.gov/pubmed/26520332

    [21] Urban M W, Qiang B, Song P. et al. Investigation of the effects of myocardial anisotropy for shear wave elastography using impulsive force and harmonic vibration[J]. Physics in Medicine & Biology, 61, 365-382(2016). http://ieeexplore.ieee.org/document/7329584/

    [22] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010). http://europepmc.org/abstract/med/20210435

    [23] Duncan D D, Kirkpatrick S J. Processing algorithms for tracking speckle shifts in optical elastography of biological tissues[J]. Journal of Biomedical Optics, 6, 418-426(2001). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000002000012000102000001&idtype=cvips&gifs=Yes

    [24] Nader C A, Pellen F, Roquefort P. et al. Evaluation of low viscosity variations in fluids using temporal and spatial analysis of the speckle pattern[J]. Optics Letters, 41, 2521-2524(2016). http://www.ncbi.nlm.nih.gov/pubmed/27244404

    [25] Wang Y, Wen D, Chen X. et al. Improving the estimation of flow speed for laser speckle imaging with single exposure time[J]. Optics Letters, 42, 57-60(2017). http://europepmc.org/abstract/MED/28059177

    [26] Chen X, Wang J, Wang Y, Photonics Conferenceet al. Measuring viscoelasticity by tracking vibration based on laser speckle contrast imaging[C]. AF3A:, AF3A, 7(2016).

    [27] Aksoy H G. Broadband ultrasonic spectroscopy for the characterization of viscoelastic materials[J]. Ultrasonics, 67, 168-177(2016). http://www.ncbi.nlm.nih.gov/pubmed/26859428

    [28] Urban M W, Pislaru C, Nenadic I Z. et al. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV)[J]. IEEE Transactions on Medical Imaging, 32, 247-261(2013). http://europepmc.org/articles/PMC3562367

    [29] Cheng Y, Li S, Eckersley R J. et al. Viscosity measurement based on shear-wave laser speckle contrast analysis[J]. Journal of Biomedical Optics, 18, 121511(2013). http://europepmc.org/abstract/med/24357548

    [30] Chen S G, Urban M W, Pislaru C et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 56, 55-62(2009). http://europepmc.org/abstract/med/19213632

    [31] Li C H, Guan G Y, Cheng X. et al. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography[J]. Optics Letters, 37, 722-724(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ol-37-4-722

    [32] Sun K, Yuan L, Shen Z. et al. Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique[J]. Applied Optics, 52, 6896-6905(2013). http://www.ncbi.nlm.nih.gov/pubmed/24085203

    [33] Wang L H V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model[J]. Physical Review Letters, 87, 043903(2001). http://www.ncbi.nlm.nih.gov/pubmed/11461618

    [34] Wang L H V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model[J]. Optics Letters, 26, 1191-1193(2001). http://www.ncbi.nlm.nih.gov/pubmed/11461618

    [35] Lu M Z, Wu Y P, Shi Y. et al. Monte Carlo simulation of scattered light with shear waves generated by acoustic radiation force for acousto-optic imaging[J]. Chinese Physics Letters, 29, 124302(2012). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012ChPhL..29l4302L&db_key=PHY&link_type=ABSTRACT

    [36] Li S, Cheng Y, Song L. et al. Tracking shear waves in turbid medium by light: theory, simulation, and experiment[J]. Optics Letters, 39, 1597-1600(2014). http://europepmc.org/abstract/med/24690847

    [37] Li Y J, Huang W J, Ma F C. et al. A modified Monte Carlo model of speckle tracking of shear wave induced by acoustic radiation force for acousto-optic elasticity imaging[J]. Chinese Physics Letters, 33, 114301(2016). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlkb201611016&dbname=CJFD&dbcode=CJFQ

    [38] Cheng Y, Li R, Li S N. et al. Shear wave elasticity imaging based on acoustic radiation force and optical detection[J]. Ultrasound in Medicine & Biology, 38, 1637-1645(2012). http://www.ncbi.nlm.nih.gov/pubmed/22749816

    [39] Cheng Y, Li S, Eckersley R J. et al. Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry[J]. Biomed Optics Express, 6, 63-71(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4317126/

    [40] Nenadic I Z, Qiang B, Urban M W. et al. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients[J]. Physics in Medicine & Biology, 62, 484-500(2017). http://adsabs.harvard.edu/abs/2017PMB....62..484N

    [41] Mason T G, Weitz D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids[J]. Physical Review Letters, 74, 1250-1253(1995). http://europepmc.org/abstract/MED/10058972

    [42] Dasgupta B R, Weitz D A. Microrheology of cross-linked polyacrylamide networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 71, 021504(2005). http://www.ncbi.nlm.nih.gov/pubmed/15783330

    [43] W B. Keen S, J P, et al. Rheology-New concepts, applications and methods[M]. London: In Tech, 3(2013).

    [44] Hajjarian Z, Nia H T, Ahn S. et al. Laser speckle rheology for evaluating the viscoelastic properties of hydrogel scaffolds[J]. Scientific Reports, 6, 37949(2016). http://www.nature.com/articles/srep37949

    [45] Hajjarian Z, Nadkarni S K. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids[J]. Plos One, 8, e65014(2013). http://europepmc.org/articles/pmc3660338/

    [46] Wang J, Hosoda M, Tshikudi D M. et al. Intraluminal laser speckle rheology using an omni-directional viewing catheter[J]. Biomedical Optics Express, 8, 137-150(2017). http://europepmc.org/abstract/PMC/PMC5231287

    [47] Hajjarian Z, Tshikudi D M, Nadkarni S K. Evaluating platelet aggregation dynamics from laser speckle fluctuations[J]. Biomedical Optics Express, 8, 3502-3515(2017). http://europepmc.org/abstract/MED/28717586

    [48] Hajjarian Z, Nadkarni S K. Estimation of particle size variations for laser speckle rheology of materials[J]. Optics Letters, 40, 764-767(2015). http://www.ncbi.nlm.nih.gov/pubmed/25723427

    [49] Tearney G J, Bouma B E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis[J]. Optics Letters, 27, 533-535(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=947842

    [50] Nadkarni S K, Bilenca A, Bouma B E. et al. Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images[J]. Journal of Biomedical Optics, 11, 021006(2006). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978660/

    [51] Nadkarni S K, Bouma B E, Helg T. et al. Characterization of atherosclerotic plaques by laser speckle imaging[J]. Circulation, 112, 885-892(2005). http://www.ncbi.nlm.nih.gov/pubmed/16061738

    [52] Tripathi M M, Hajjarian Z. Van Cott E M, et al. Assessing blood coagulation status with laser speckle rheology[J]. Biomedical Optics Express, 5, 817-831(2014). http://www.ncbi.nlm.nih.gov/pubmed/24688816

    [53] Hajjarian Z, Tripathi M M, Nadkarni S K. Optical thromboelastography to evaluate whole blood coagulation[J]. Journal of Biophotonics, 8, 372-381(2015). http://onlinelibrary.wiley.com/doi/10.1002/jbio.201300197/pdf

    [54] Fokkink R, van der G J et al. Quantitative imaging of heterogeneous dynamics in drying and aging paints[J]. Scientific Reports, 6, 34383(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5041151/

    [55] Hajjarian Z, Nadkarni S K. Correction of optical absorption and scattering variations in laser speckle sheology measurements[J]. Optics Express, 22, 6349-6361(2014). http://europepmc.org/articles/PMC4083052/

    [56] Hajjarian Z, Xi J Q, Jaffer F A. et al. Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall[J]. Journal of Biomedical Optics, 16, 026005(2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056316/

    [57] Kirkpatrick S J, Duncan D D, Fang L. Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin[J]. Journal of Biomedical Optics, 9, 1311-1319(2004). http://europepmc.org/abstract/MED/15568953

    [58] Jacques S L, Kirkpatrick S J. Acoustically modulated speckle imaging of biological tissues[J]. Optics Letters, 23, 879-881(1998). http://www.ncbi.nlm.nih.gov/pubmed/18087372

    [59] Duncan D D, Kirkpatrick S J. Performance analysis of a maximum-likelihood speckle motion estimator[J]. Optics Express, 10, 927-941(2002). http://europepmc.org/abstract/MED/19451947

    [60] Kirkpatrick S J, Hinds M T, Duncan D D. Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold[J]. Tissue Engineering, 9, 645-656(2003). http://europepmc.org/abstract/MED/13678443

    Chen Xiao, Lu Jinling, Li Pengcheng. Viscoelasticity Measurement of Biological Tissues Using Laser Speckle Techniques: a Review[J]. Chinese Journal of Lasers, 2018, 45(2): 207005
    Download Citation