• Photonics Research
  • Vol. 2, Issue 5, 126 (2014)
Daisy Williams*, Xiaoyi Bao, and Liang Chen
Author Affiliations
  • Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
  • show less
    DOI: 10.1364/PRJ.2.000126 Cite this Article Set citation alerts
    Daisy Williams, Xiaoyi Bao, Liang Chen, "Effects of polarization on stimulated Brillouin scattering in a birefringent optical fiber," Photonics Res. 2, 126 (2014) Copy Citation Text show less
    References

    [1] R. Boyd. Nonlinear Optics(1992).

    [2] G. P. Agrawal. Nonlinear Fiber Optics(2006).

    [3] R. H. Stolen. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron., QE-15, 1157-1160(1979).

    [4] D. R. Walker, M. Bashkanski, A. Gulian, F. K. Fatemi, M. Steiner. Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror. J. Opt. Soc. Am. B, 25, C61-C64(2008).

    [5] O. Shlomovits, M. Tur. Vector analysis of depleted stimulated Brillouin scattering amplification in standard single-mode fibers with non-zero birefringence. Opt. Lett., 38, 836-838(2013).

    [6] X. Bao, L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11, 4152-4187(2011).

    [7] F. Ravet. Performance of the Distributed Brillouin Sensor: Benefits and Penalties Due to Pump Depletion(2007).

    [8] T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada. Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol., 13, 1296-1302(1995).

    [9] L. Thévenaz, S. F. Mafang. Depletion in a distributed Brillouin fiber sensor: practical limitation and strategy to avoid it. Proc. SPIE, 7753, 77535A(2011).

    [10] W. Zou, Z. He, K. Hotate. Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers. IEEE Photon. Technol. Lett., 18, 2487-2489(2006).

    [11] L. Ursini, M. Santagiustina, L. Palmieri. Polarization-dependent Brillouin gain in randomly birefringence fibers. IEEE Photon. Technol. Lett., 22, 712-714(2010).

    [12] M. O. van Deventer, A. J. Boot. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Lightwave Technol., 12, 585-590(1994).

    [13] W. Zou, Z. He, K. Hotate. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express, 17, 1248-1255(2009).

    [14] A. Zadok, A. Eyal, M. Tur. Polarization attributes of stimulated Brillouin scattering slow light in fiber. Proc. SPIE, 7949, 79490A(2011).

    [15] S. Xie, M. Pang, X. Bao, L. Chen. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing. Opt. Express, 20, 6385-6399(2012).

    [16] L. Thevenaz, M. Facchini, A. Fellay, M. Nikles, P. Robert. Evaluation of local birefringence along fibres using Brillouin analysis. Conference Digest OFMC’97, 82-85(1997).

    [17] A. Zadok, S. Chin, L. Thevenaz, E. Zilka, A. Eyal, M. Tur. Polarization-induced distortion in stimulated Brillouin scattering slow-light systems. Opt. Lett., 34, 2530-2532(2009).

    [18] D. Williams, X. Bao, L. Chen. Characterization of high nonlinearity in Brillouin amplification in optical fibers with applications in fiber sensing and photonic logic. Photon. Res., 2, 1-9(2014).

    [19] L. Chen, X. Bao. Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber. Opt. Commun., 152, 65-70(1998).

    [20] E. Collette. Field Guide to Polarization(2005).

    [21] A. Kumar, A. Ghatak. Polarization of Light with Applications in Optical Fibers(2011).

    [22] Y. Li, X. Bao, Y. Dong, L. Chen. A novel distributed Brillouin sensor based on optical differential parametric amplification. J. Lightwave Technol., 28, 2621-2626(2010).

    [23] J. W. D. Chi, L. Chao, M. K. Rao. Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides. IEEE J. Quantum Electron., 37, 1329-1336(2001).

    [24] R. Chu, M. Kanefsky, J. Falk. Numerical study of transient stimulated Brilllouin scattering. J. Appl. Phys., 71, 4653-4658(1992).

    [25] M. Razaghi, V. Ahmadi, M. J. Connelly. Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier. J. Lightwave Technol., 27, 3162-3174(2009).

    [26] F. S. Gokhan, G. W. Griffiths, W. E. Schiesser. Method of lines solution to the transient SBS equations for nanosecond Stokes pulses. J. Eur. Opt. Soc., 8, 13049(2013).

    [27] Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B, 22, 2378-2384(2005).

    [28] C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, C. Robin. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt. Express, 20, 21196-21213(2012).

    [29] D. Cotter. Transient stimulated Brillouin scattering in long single-mode fibres. Electron. Lett., 18, 504-506(1982).

    [30] V. P. Kalosha, L. Chen, X. Bao. Slow and fast light via SBS in optical fibers for short pulses and broadband pump. Opt. Express, 14, 12693-12703(2006).

    [31] V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao. How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses. Opt. Express, 14, 2071-2077(2006).

    [32] S. V. Afshar, G. A. Ferrier, X. Bao, L. Chen. Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems. Opt. Lett., 28, 1418-1420(2003).

    [33] R. Bernini, A. Minardo, L. Zeni. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett., 34, 2613-2615(2009).

    [34] X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, B. Benmokrane. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering. Smart Mater. Struct., 17, 015003(2008).

    [35] V. I. Kovalev, R. G. Harrison. Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber. Phys. Rev. Lett., 85, 1879-1882(2000).

    [36] L. Stepien, S. Randoux, J. Zemmouri. Origin of spectral hole burning in Brillouin fiber amplifiers and generators. Phys. Rev. A, 65, 053812(2002).

    CLP Journals

    [1] Xinglin Zeng, Wenbin He, Michael H. Frosz, Andreas Geilen, Paul Roth, Gordon K. L. Wong, Philip St.J. Russell, Birgit Stiller, "Stimulated Brillouin scattering in chiral photonic crystal fiber," Photonics Res. 10, 711 (2022)