[1] R. Boyd. Nonlinear Optics(1992).
[2] G. P. Agrawal. Nonlinear Fiber Optics(2006).
[3] R. H. Stolen. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron., QE-15, 1157-1160(1979).
[4] D. R. Walker, M. Bashkanski, A. Gulian, F. K. Fatemi, M. Steiner. Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror. J. Opt. Soc. Am. B, 25, C61-C64(2008).
[5] O. Shlomovits, M. Tur. Vector analysis of depleted stimulated Brillouin scattering amplification in standard single-mode fibers with non-zero birefringence. Opt. Lett., 38, 836-838(2013).
[6] X. Bao, L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11, 4152-4187(2011).
[7] F. Ravet. Performance of the Distributed Brillouin Sensor: Benefits and Penalties Due to Pump Depletion(2007).
[8] T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada. Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol., 13, 1296-1302(1995).
[9] L. Thévenaz, S. F. Mafang. Depletion in a distributed Brillouin fiber sensor: practical limitation and strategy to avoid it. Proc. SPIE, 7753, 77535A(2011).
[10] W. Zou, Z. He, K. Hotate. Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers. IEEE Photon. Technol. Lett., 18, 2487-2489(2006).
[11] L. Ursini, M. Santagiustina, L. Palmieri. Polarization-dependent Brillouin gain in randomly birefringence fibers. IEEE Photon. Technol. Lett., 22, 712-714(2010).
[12] M. O. van Deventer, A. J. Boot. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Lightwave Technol., 12, 585-590(1994).
[13] W. Zou, Z. He, K. Hotate. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express, 17, 1248-1255(2009).
[14] A. Zadok, A. Eyal, M. Tur. Polarization attributes of stimulated Brillouin scattering slow light in fiber. Proc. SPIE, 7949, 79490A(2011).
[15] S. Xie, M. Pang, X. Bao, L. Chen. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing. Opt. Express, 20, 6385-6399(2012).
[16] L. Thevenaz, M. Facchini, A. Fellay, M. Nikles, P. Robert. Evaluation of local birefringence along fibres using Brillouin analysis. Conference Digest OFMC’97, 82-85(1997).
[17] A. Zadok, S. Chin, L. Thevenaz, E. Zilka, A. Eyal, M. Tur. Polarization-induced distortion in stimulated Brillouin scattering slow-light systems. Opt. Lett., 34, 2530-2532(2009).
[18] D. Williams, X. Bao, L. Chen. Characterization of high nonlinearity in Brillouin amplification in optical fibers with applications in fiber sensing and photonic logic. Photon. Res., 2, 1-9(2014).
[19] L. Chen, X. Bao. Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber. Opt. Commun., 152, 65-70(1998).
[20] E. Collette. Field Guide to Polarization(2005).
[21] A. Kumar, A. Ghatak. Polarization of Light with Applications in Optical Fibers(2011).
[22] Y. Li, X. Bao, Y. Dong, L. Chen. A novel distributed Brillouin sensor based on optical differential parametric amplification. J. Lightwave Technol., 28, 2621-2626(2010).
[23] J. W. D. Chi, L. Chao, M. K. Rao. Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides. IEEE J. Quantum Electron., 37, 1329-1336(2001).
[24] R. Chu, M. Kanefsky, J. Falk. Numerical study of transient stimulated Brilllouin scattering. J. Appl. Phys., 71, 4653-4658(1992).
[25] M. Razaghi, V. Ahmadi, M. J. Connelly. Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier. J. Lightwave Technol., 27, 3162-3174(2009).
[26] F. S. Gokhan, G. W. Griffiths, W. E. Schiesser. Method of lines solution to the transient SBS equations for nanosecond Stokes pulses. J. Eur. Opt. Soc., 8, 13049(2013).
[27] Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B, 22, 2378-2384(2005).
[28] C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, C. Robin. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt. Express, 20, 21196-21213(2012).
[29] D. Cotter. Transient stimulated Brillouin scattering in long single-mode fibres. Electron. Lett., 18, 504-506(1982).
[30] V. P. Kalosha, L. Chen, X. Bao. Slow and fast light via SBS in optical fibers for short pulses and broadband pump. Opt. Express, 14, 12693-12703(2006).
[31] V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao. How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses. Opt. Express, 14, 2071-2077(2006).
[32] S. V. Afshar, G. A. Ferrier, X. Bao, L. Chen. Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems. Opt. Lett., 28, 1418-1420(2003).
[33] R. Bernini, A. Minardo, L. Zeni. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett., 34, 2613-2615(2009).
[34] X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, B. Benmokrane. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering. Smart Mater. Struct., 17, 015003(2008).
[35] V. I. Kovalev, R. G. Harrison. Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber. Phys. Rev. Lett., 85, 1879-1882(2000).
[36] L. Stepien, S. Randoux, J. Zemmouri. Origin of spectral hole burning in Brillouin fiber amplifiers and generators. Phys. Rev. A, 65, 053812(2002).