• Photonics Research
  • Vol. 2, Issue 5, 126 (2014)
Daisy Williams*, Xiaoyi Bao, and Liang Chen
Author Affiliations
  • Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
  • show less
    DOI: 10.1364/PRJ.2.000126 Cite this Article Set citation alerts
    Daisy Williams, Xiaoyi Bao, Liang Chen, "Effects of polarization on stimulated Brillouin scattering in a birefringent optical fiber," Photonics Res. 2, 126 (2014) Copy Citation Text show less
    Schematic arrangement of SBS in an optical fiber of length L: E1x, PW; E1y, PW; E2x, SW; E2y, SW.
    Fig. 1. Schematic arrangement of SBS in an optical fiber of length L: E1x, PW; E1y, PW; E2x, SW; E2y, SW.
    (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: *10−4; —10−5; ‐ ‐ ‐ 10−6; LHP(1,0,0); L=1000 m. P1x0=0.5 mW, P1y0=0.5 mW, P2x0=0.5 mW, and P2y0=0.5 mW.
    Fig. 2. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn:*104; —105; ‐ ‐ ‐ 106; LHP(1,0,0); L=1000m. P1x0=0.5mW, P1y0=0.5mW, P2x0=0.5mW, and P2y0=0.5mW.
    Brillouin shift dependence on beat length; L=1000 m, LHP (1,0,0). (a) P1x0=0.9 mW, P1y0=0.1 mW, P2x0=0.9 mW, and P2y0=0.1 mW. (b) P1x0=0.5 mW, P1y0=0.5 mW, P2x0=0.5 mW, and P2y0=0.5 mW.
    Fig. 3. Brillouin shift dependence on beat length; L=1000m, LHP (1,0,0). (a) P1x0=0.9mW, P1y0=0.1mW, P2x0=0.9mW, and P2y0=0.1mW. (b) P1x0=0.5mW, P1y0=0.5mW, P2x0=0.5mW, and P2y0=0.5mW.
    Left: output pump spectrum. Right: output Stokes spectrum. (a), (b) steady state; (c), (d) 240 ns pulse; (e), (f) 79 ns pulse; birefringence Δn=10−4, L=1 km. –··–: P1x0=10.0 mW, P1y0=1.0 mW, P2x0=10.0 mW, and P2y0=1.0 mW; LHP (1,0,0). —: P1x0=10.9 mW, P1y0=0.1 mW, P2x0=10.9 mW, and P2y0=0.1 mW; LHP (1,0,0). ‐ ‐ ‐: P1x0=10.0 mW, P1y0=1.0 mW, P2x0=10.0 mW, and P2y0=1.0 mW; no pol (0,0,0).
    Fig. 4. Left: output pump spectrum. Right: output Stokes spectrum. (a), (b) steady state; (c), (d) 240 ns pulse; (e), (f) 79 ns pulse; birefringence Δn=104, L=1km. –··–: P1x0=10.0mW, P1y0=1.0mW, P2x0=10.0mW, and P2y0=1.0mW; LHP (1,0,0). —: P1x0=10.9mW, P1y0=0.1mW, P2x0=10.9mW, and P2y0=0.1mW; LHP (1,0,0). ‐ ‐ ‐: P1x0=10.0mW, P1y0=1.0mW, P2x0=10.0mW, and P2y0=1.0mW; no pol (0,0,0).
    (a) x component of output Stokes spectrum. (b) y component of output Stokes spectrum. Birefringence Δn:*10−4; —10−5; ‐ ‐ ‐10−6; Random4 (0.1,0.9,0.42), L=1000 m. P1x0=10.0 mW, P1y0=1.0 mW, P2x0=10.0 mW, and P2y0=1.0 mW.
    Fig. 5. (a) x component of output Stokes spectrum. (b) y component of output Stokes spectrum. Birefringence Δn:*104; —105; ‐ ‐ ‐106; Random4 (0.1,0.9,0.42), L=1000m. P1x0=10.0mW, P1y0=1.0mW, P2x0=10.0mW, and P2y0=1.0mW.
    (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 10−6 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐10−6 Random 2 (0.3, 0.7, 0.65); L=1000 m ○ 10−6 Random 3 (0.58, 0.58, 0.58); * 10−6 Random 4 (0.1, 0.9,0.42); —10−10 no pol (0,0,0). P1x0=1.0 mW, P1y0=1.0 mW, P2x0=1.0 mW, and P2y0=80.0 mW
    Fig. 6. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 106 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐106 Random 2 (0.3, 0.7, 0.65); L=1000m106 Random 3 (0.58, 0.58, 0.58); * 106 Random 4 (0.1, 0.9,0.42); —1010 no pol (0,0,0). P1x0=1.0mW, P1y0=1.0mW, P2x0=1.0mW, and P2y0=80.0mW
    (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 10−6 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐10−6 Random 2 (0.3, 0.7, 0.65); L=1000 m ○ 10−6 Random 3 (0.58, 0.58, 0.58); * 10−6 Random 4 (0.1, 0.9,0.42); —10−10 no pol (0,0,0). P1x0=10.0 mW, P1y0=1.0 mW, P2x0=60.0 mW, and P2y0=1.0 mW.
    Fig. 7. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 106 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐106 Random 2 (0.3, 0.7, 0.65); L=1000m106 Random 3 (0.58, 0.58, 0.58); * 106 Random 4 (0.1, 0.9,0.42); —1010 no pol (0,0,0). P1x0=10.0mW, P1y0=1.0mW, P2x0=60.0mW, and P2y0=1.0mW.