• Photonics Research
  • Vol. 12, Issue 2, 350 (2024)
Yuan Yao1, Haosen Shi1, Guang Yang1, Bo Li1, Congyu Wang1, Hongfu Yu1, Longsheng Ma1、2, and Yanyi Jiang1、2、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.504539 Cite this Article Set citation alerts
    Yuan Yao, Haosen Shi, Guang Yang, Bo Li, Congyu Wang, Hongfu Yu, Longsheng Ma, Yanyi Jiang. Coherent link between a Ti:sapphire comb and a 1.5 μm laser via nonlinear interaction in photonic crystal fiber[J]. Photonics Research, 2024, 12(2): 350 Copy Citation Text show less
    References

    [1] S. M. Brewer, J.-S. Chen, A. M. Hankin. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett., 123, 033201(2019).

    [2] W. F. McGrew, X. Zhang, R. J. Fasano. Atomic clock performance enabling geodesy below the centimeter level. Nature, 564, 87-90(2018).

    [3] F. Riehle, P. Gill, F. Arias. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia, 55, 188-200(2018).

    [4] J. Lodewyck. On a definition of the SI second with a set of optical clock transitions. Metrologia, 56, 055009(2019).

    [5] T. Bothwell, C. J. Kennedy, A. Aeppli. Resolving the gravitational redshift across a millimeter-scale atomic sample. Nature, 602, 420-424(2022).

    [6] M. Takamoto, I. Ushijima, N. Ohmae. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics, 14, 411-415(2020).

    [7] C. Sanner, N. Huntemann, R. Lange. Optical clock comparison test of Lorentz symmetry. Nature, 567, 204-208(2019).

    [8] C. W. Chou, D. B. Hume, T. Rosenband. Optical clocks and relativity. Science, 329, 1630-1633(2010).

    [9] BACON collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564-569(2021).

    [10] P. Wcisło, P. Ablewski, K. Beloy. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv., 4, eaau4869(2018).

    [11] F. Riehle. Optical clock networks. Nat. Photonics, 11, 25-31(2017).

    [12] O. Lopez, F. Kéfélian, H. Jiang. Frequency and time transfer for metrology and beyond using telecommunication network fibres. C. R. Phys., 16, 531-539(2015).

    [13] D. G. Matei, T. Legero, S. Häfner. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [14] J. M. Robinson, E. Oelker, W. R. Milner. Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift. Optica, 6, 240-243(2019).

    [15] E. Oelker, R. B. Hutson, C. J. Kennedy. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714-719(2019).

    [16] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297-1309(2006).

    [17] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279-1295(2006).

    [18] D. Nicolodi, B. Argence, W. Zhang. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat. Photonics, 8, 219-223(2014).

    [19] H. Leopardi, J. Davila-Rodriguez, F. Quinlan. Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability. Optica, 4, 879-885(2017).

    [20] N. Ohmae, N. Kuse, M. E. Fermann. All-polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks. Appl. Phys. Express, 10, 062503(2017).

    [21] Y. Yao, Y. Jiang, H. Yu. Optical frequency divider with division uncertainty at the 10–21 level. Nat. Sci. Rev., 3, 463-469(2016).

    [22] Y. Nakajima, H. Inaba, K. Hosaka. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Opt. Express, 18, 1667-1676(2010).

    [23] E. Benkler, B. Lipphardt, T. Puppe. End-to-end topology for fiber comb based optical frequency transfer at the 10–21 level. Opt. Express, 27, 36886-36902(2019).

    [24] K. Kashiwagi, Y. Nakajima, M. Wada. Multi-branch fiber comb with relative frequency uncertainty at 10−20 using fiber noise difference cancellation. Opt. Express, 26, 8831-8840(2018).

    [25] M. Giunta, W. Hänsel, M. Fischer. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place. Nat. Photonics, 14, 44-49(2020).

    [26] A. Rolland, P. Li, N. Kuse. Ultra-broadband dual-branch optical frequency comb with 10−18 instability. Optica, 5, 1070-1077(2018).

    [27] T. Nakamura, I. Ito, Y. Kobayashi. Offset-free broadband Yb:fiber optical frequency comb for optical clocks. Opt. Express, 23, 19376-19381(2015).

    [28] B. Xu, H. Yasui, Y. Nakajima. Fully stabilized 750-MHz Yb:fiber frequency comb. Opt. Express, 25, 11910-11918(2017).

    [29] S. Fang, H. Chen, T. Wang. Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum. Appl. Phys. Lett., 102, 231118(2013).

    [30] H. Zhao, B. Kuyken, S. Clemmen. Visible-to-near-infrared octave spanning supercontinuum generation in silicon nitride waveguide. Opt. Lett., 40, 2177-2180(2015).

    [31] A. R. Johnson, A. S. Mayer, A. Klenner. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 5117-5120(2015).

    [32] A. Klenner, A. S. Mayer, A. R. Johnson. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express, 24, 11043-11053(2016).

    [33] D. R. Carlson, D. D. Hickstein, A. Lind. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett., 42, 2314-2317(2017).

    [34] J. Wei, C. Ciret, M. Billet. Supercontinuum generation assisted by wave trapping in dispersion-managed integrated silicon waveguides. Phys. Rev. Appl., 14, 054045(2020).

    [35] Y. Jiang, Z. Bi, L. Robertsson. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs. Metrologia, 42, 304-307(2005).

    [36] H. R. Telle, B. Lipphardt, J. Stenger. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B, 74, 1-6(2002).

    [37] Y. Yao, B. Li, G. Yang. Optical frequency synthesizer referenced to an ytterbium optical clock. Photon. Res., 9, 98-105(2021).

    Yuan Yao, Haosen Shi, Guang Yang, Bo Li, Congyu Wang, Hongfu Yu, Longsheng Ma, Yanyi Jiang. Coherent link between a Ti:sapphire comb and a 1.5 μm laser via nonlinear interaction in photonic crystal fiber[J]. Photonics Research, 2024, 12(2): 350
    Download Citation