• Laser & Optoelectronics Progress
  • Vol. 53, Issue 11, 110001 (2016)
Bai Feng1、2、* and Zhao Quanzhong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.110001 Cite this Article Set citation alerts
    Bai Feng, Zhao Quanzhong. Ultrafast Laser Annealing of Semiconductors[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110001 Copy Citation Text show less
    References

    [1] Venturini J, Hernandez M, Kerrien G, et al. Excimer laser thermal processing of ultra-shallow junction: laser pulse duration[J]. Thin Solid Films, 2004, 453: 145-149.

    [2] Hernandez M, Venturini J, Berard D, et al. Laser thermal processing using an optical coating for ultra shallow junction formation[J]. Materials Science and Engineering: B, 2004, 114: 105-108.

    [3] Fortunato G, Mariucci L, Stanizzi M, et al. Ultra-shallow junction formation by excimer laser annealing and low energy (<1 keV) B implantation: A two-dimensional analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: 2002, 206(1): 401-408.

    [4] Torregrosa F, Laviron C, Milesi F, et al. Ultra shallow P+/N junctions using plasma immersion ion implantation and laser annealing for sub 0.1 μm CMOS devices[J]. Nuclear Instruments and Methods in Physics Research Section B, 2005, 237(1): 20-24.

    [5] Shima A, Hiraiwa A. Ultra-shallow junction formation by non-melt laser spike annealing and its application to complementary metal oxide semiconductor devices in 65-nm node[J]. Japanese Journal of Applied Physics, 2006, 45(7): 5708-5715.

    [6] Yamamoto T, Kubo T, Sukegawa T, et al. Advantages of a new scheme of junction profile engineering with laser spike annealing and its integration into a 45-nm node high performance CMOS technology[C]. IEEE Symposium on VLSI Technology Digest of Technical Papers, 2007: 122-123.

    [7] Hoffmann T, Noda T, Felch S, et al. Laser annealed junctions: process integration sequence optimization for advanced CMOS technologies[C]. 2007 International Workshop on Junction Technology, 2007: 137-140

    [8] Boyd I W, Moss S C. Semiconductor technology: Kinetics of pulsed laser annealing[J]. Nature, 2085, 313: 100.

    [9] Boyd I W, Wilson J I B. Laser processing of silicon[J]. Nature, 2083, 303: 481-486.

    [10] Galvin G J, Thompson M O, Mayer J M, et al. Measurement of the velocity of the crystal-liquid interface in pulsed laser annealing of Si[J]. Physical Review Letters, 2082, 48(1-4): 33-36.

    [11] Pankratov E L. Redistribution of dopant during microwave annealing of a multilayer structure for production p-n junction[J]. Journal of Applied Physics, 2008, 103: 064320.

    [12] Adachi K, Ohuchi K, Aoki N, et al. Issues and optimization of millisecond anneal process for 45 nm node and beyond[C]. IEEE Symposium on VLSI Technology Digest of Technical Papers, 2005: 142-143.

    [13] Venturini J, Hernandez M, Huet K, et al. Integration of a long pulse laser thermal process for ultra shallow junction formation of CMOS devices[C]. 12th IEEE International Conference on Advanced Thermal Processing of Semiconductors, 2004: 73-78.

    [14] Kudo T J. Double-pulsed laser annealing technologies and related applications[C]. 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors, 2006: 21-29.

    [15] Gutt T, Schulze H. Deep melt activation using laser thermal annealing for IGBT thin wafer technology[C]. 22nd International Symposium on Power Semiconductor Devices & IC′s, 2010: 29-32.

    [16] Uchikoga S, Ibaraki N. Low temperature poly-Si TFT-LCD by excimer laser anneal[J]. Thin Solid Films, 2001, 383(1-2): 20-24.

    [17] Feinleib J, deNeufville J, Moss S C, et al. Rapid reversible light-induced crystallization of amorphous semiconductors[J]. Applied Physics Letters, 2071, 20(6): 254-257.

    [18] Khaibullin I B, Shtyrkov E I, Zaripov M M, et al. Some features of laser annealing of implanted silicon layers[J]. Radiation Effects, 2078, 36(3-4): 225-233.

    [19] Foti G, Rimini E, Vitali G, et al. Amorphous-polycrystal transition induced by laser pulse in self-ion implanted silicon[J]. Applied Physics, 2077, 14(2): 209-201.

    [20] Boyd I W, Wilson J I B. Laser annealing for semiconductor devices[J]. Nature, 2080, 287: 278.

    [21] Zhvavyi S P, Sadovskaya O L. Nanosecond laser annealing of implanted silicon - simulation of dynamics[J]. Physica Status Solidi (a), 2089, 112(1): K20-K22.

    [22] von der Linde D, Wartmann G. Raman scattering with nanosecond resolution during pulsed laser annealing of silicon[J]. Applied Physics Letters, 2082, 41(8): 700-702.

    [23] Hsieh D M, Wang J Y, Fuh A Y G. Direct observation of the moving liquid/solid interface during nanosecond pulsed laser annealing of silicon[J]. Japanese Journal of Applied Physics, 2097, 36(4B): L455-L458.

    [24] Lee M C, Lo H W, Aydinli A, et al. Nanosecond optical transmission studies of laser annealing in ion-implanted silicon-on-sapphire[J]. Solid State Communications, 2083, 46(9): 677-680.

    [25] Sameshima T, Hara M, Usui S. Pulsed laser-induced amorphization of polycrystalline silicon film[J]. Japanese Journal of Applied Physics, 2090, 29(4): L548-L551.

    [26] Zhvavyi S P, Sadovskaya O L. Computer modeling of the dynamics of nanosecond laser annealing of amorphous thin silicon layers[C]. SPIE, 2091, 1440: 8-15.

    [27] Hernandez M, Venturini J, Zahorski D, et al. Laser thermal processing for ultra shallow junction formation: numerical simulation and comparison with experiments[J]. Applied Surface Science, 2003, 208: 345-351.

    [28] Florakis A, Papadimitriou A, Chatzipanagiotis N, et al. Formation of silicon ultra shallow junction by non-melt excimer laser treatment[J]. Solid-State Electronics, 2010, 54(9): 903-908.

    [29] Juang M H, Lu C N, Jang S L, et al. Study of ultra-shallow p+n junctions formed by excimer laser annealing[J]. Materials Chemistry and Physics, 2010, 123(1): 260-263.

    [30] Magna A L, Alippi P, Mannino G, et al. Computational methods for the simulation of the excimer laser annealing in MOS technology[J]. Materials Science and Engineering: B, 2004, 114: 100-104.

    [31] Monakhov E V, Svensson B G, Linnarsson M K, et al. Excimer laser annealing of shallow As and B doped layers[J]. Materials Science and Engineering: B, 2004, 114: 352-357.

    [32] Burtsev A, Schut H, Nanver L K, et al. Surface morphologies of excimer-laser annealed BF2+ implanted Si diodes[J]. Materials Science and Engineering: B, 2004, 114-115: 109-113.

    [33] Nguyen N D, Rosseel E, Takeuchi S, et al. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology[J]. Thin Solid Films, 2010, 520(6): S48-S52.

    [34] Sameshima T, Usui S, Sekiya M. XeClexcimer laser annealing used in the fabrication of poly-Si TFT′s[J]. IEEE Electron Device Letters, 2086, 7(5): 276-278.

    [35] Sera K, Okumura F, Uchida H, et al. High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film[J]. IEEE Transactions on Electron Devices, 2089, 36(12): 2868-2872.

    [36] Sameshima T, Hara M, Usui S. XeCl excimer laser annealing used to fabricate poly-Si TFT′s[J]. Japanese Journal of Applied Physics, 2089, 28(10): 2089-2093.

    [37] Murakami K, Gamo K, Kawabe M, et al. Dynamic behavior of 30-ps pulsed-laser annealing in ion-implanted Si[J]. Japanese Journal of Applied Physics, 2079, 20(12): 2311-2312.

    [38] Liu P L, Yen R, Bloembergen N, et al. Picosecond laser-induced melting and resolidification morphology on Si[J]. Applied Physics Letters, 2079, 34(12): 864-866.

    [39] Siegel J, Schropp A, Solis J, et al. Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses[J]. Applied Physics Letters, 2004, 84(13): 2250-2252.

    [40] Shank C V, Yen R, Hirlimann C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon[J]. Physics Review Letters, 2083, 50(6): 454-457.

    [41] Tom H W K, Aumiller G D, Brito-Cruz C H. Time-resolved study of laser-induced disorder of Si surfaces[J]. Physics Review Letters, 2088, 60(14): 1438-1441.

    [42] Saeta P, Wang J, Siegal Y, et al. Ultrafast electronic disordering during femtosecond laser melting of GaAs[J]. Physical Review Letters, 2091, 67(8): 1023-1026.

    [43] Govorkov S V, Shumay I L, Rudolph W, et al. Time-resolved second-harmonic study of femtosecond laser-induced disordering of GaAs surfaces[J]. Optics Letters, 2091, 20(13): 1013-1015.

    [44] Shumay I L, Hfer U. Phase transformations of an InSb surface induced by strong femtosecond laser pulses[J]. Physical Review B, 2096, 53(23): 15878-15884.

    [45] Korchagina T T, Volodin V A, Chichkov B N. Formation and crystallization of silicon nanoclusters in SiNx: H films using femtosecond pulsed laser annealings[J]. Semiconductors, 2010, 44(12): 2011-2016.

    [46] Da Silva J L F, Walsh A, Wei S H, et al. Atomistic origins of the phase transition mechanism in Ge2Sb2Te5[J]. Journal of Applied Physics, 2009, 106(11): 113509.

    [47] Konishi M, Santo H, Hongo Y, et al. Ultrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse[J]. Applied Optics, 2010, 49(20): 3470-3473.

    [48] Kwak H, Chou K, Guo J, et al. Femtosecond laser-induced disorder of the (1×1)-relaxed GaAs (110) surface[J]. Physical Review Letters, 2099, 83(20): 3745-3748.

    [49] Katsumata Y, Morita T, Morimoto Y, et al. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization[J]. Applied Physics Letters, 2014, 105(3): 032007.

    [50] Robinson A L. Femtosecond laser annealing of silicon[J]. Science, 2084, 226(4672): 329-330.

    [51] Dutta N K, Olsson N A, Heritage J P, et al. Temperature dependence of threshold current of injection lasers for short pulse excitation[J]. Applied Physics Letters, 2084, 44(10): 943-944.

    [52] Xu X A, Cheng C R, Chowdhury I H. Molecular dynamics study of phase change mechanisms during femtosecond laser ablation[J]. Journal of Heat Transfer, 2004, 126: 727-734.

    [53] Oane M, Scarlat F, Tsao S L, et al. Thermal fields in laser-multi-layer structures interaction[J]. Optics and Laser Technology, 2007, 39(4): 796-799.

    [54] Shieh J M, Chen Z H, Dai B T, et al. Near-infrared femtosecond laser-induced crystallization of amorphous silicon[J]. Applied Physics Letters, 2004, 85(7): 1232-1234.

    [55] Kanemitsu Y, Nakada I, Kuroda H. Picosecond laser-induced anomalous crystallization in amorphous-silicon[J]. Applied Physics Letters, 2085, 47(9): 939-941.

    [56] Rozgonyi G A, Baumgart H, Phillipp F, et al. Picosecond laser annealing of silicon[J]. Journal of the Electrochemical Society, 2081, 128(6): C237-C238.

    [57] Kachurin G A, Nidaev E V, Danyushkina N V. Annealing of defects by nanosecond laser-pulses after implantation of small ion doses[J]. Soviet Physics Semiconductors-Ussr, 2080, 14(4): 386-388.

    [58] Theodorakos I, Raptis Y S, Vamvakas V, et al. Laser annealing and simulation of amorphous silicon thin films for solar cell applications[C]. SPIE, 2014, 8967: 89670T.

    [59] Brand A A, Knorz A, Zeidler R, et al. Nanosecond laser annealing to decrease the damage of picosecond laser ablation of anti-reflection layers on textured silicon surfaces[C]. SPIE, 2012, 8473: 84730D.

    [60] Summonte C, Rizzoli R, Servidori M, et al. Laser induced crystallization of hydrogenated amorphous silicon-carbon alloys[J]. Journal of Applied Physics, 2004, 96(7): 3998-4005.

    [61] Bonse J, Brzezinka K W, Meixner A J. Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy[J]. Applied Surface Science, 2004, 221(1-4): 215-230.

    [62] Tsai M G, Tung H T, Chen I G, et al. Annealing effect on the properties of Cu (In0.7Ga0.3) Se2 thin films grown by femtosecond pulsed laser deposition[J]. Journal of the American Ceramic Society, 2013, 96(8): 2420-2423.

    [63] Gawelda W, Siegel J, Afonso C N, et al. Dynamics of laser-induced phase switching in GeTe films[J]. Journal of Applied Physics, 2011, 109(12): 123102.

    [64] Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Physical Review Letters, 2068, 21(20): 1450-1453.

    [65] Li Z, Hu Y, Wen T, et al. Femtosecond laser-induced crystallization of amorphous N-doped Ge8Sb92 films and in situ characterization by coherent phonon spectroscopy[J]. Journal of Applied Physics, 2015, 120(13): 135703.

    [66] Theodorakos I, Zergioti I, Vamvakas V, et al. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications[J]. Journal of Applied Physics, 2014, 115(4): 043108.

    [67] Meier J, Kroll U, Benagli S, et al. From R & D to mass production of micromorph thin film silicon PV[J]. Energy Procedia, 2012, 15: 209-208.

    [68] Shah A, Meier J, Buechel A, et al. Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass[J]. Thin Solid Films, 2006, 502(1-2): 292-299.

    [69] Li J X, She N Z, Chen S C, et al. Improving crystalline quality of non-vacuum processed Cu (In, Ga) Se2 thin films by femtosecond laser annealing[C]. Conference on Lasers and Electro-Optics, 2016: JTh2A.22.

    [70] Emelyanov A V, Kazanskii A G, Kashkarov P K, et al. Modification of the structure and hydrogen content of amorphous hydrogenated silicon films under conditions of femtosecond laser-induced crystallization[J]. Technical Physics Letters, 2014, 40(2): 141-144.

    [71] Guha S, Yang J, Williamson D L, et al. Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity[J]. Applied Physics Letters, 2099, 74(13): 2060-2062.

    [72] Ahn J Y, Jun K H, Lim K S, et al. Stable protocrystalline silicon and unstable microcrystalline silicon at the onset of a microcrystalline regime[J]. Applied Physics Letters, 2003, 82(11): 2016-2016.

    [73] Kazanskii A G, Terukov E I, Forsh P A, et al. Photoconductivity of two-phase hydrogenated silicon films[J]. Semiconductors, 2010, 44(4): 494-497.

    [74] Kazanskii A G, Mell H, Terukov E I, et al. Effect of boron dopant on the photoconductivity of microcrystalline hydrogenated silicon films[J]. Semiconductors, 2002, 36(1): 38-40.

    [75] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4): 220-224.

    [76] Siegal Y, Glezer E N, Huang L, et al. Laser-induced phase transitions in semiconductors[J]. Annual Review Materials Science, 2095, 25(1): 223-247.

    [77] Auston D H, Surko C M, Venkatesan T N C, et al. Time-resolved reflectivity of ion-implanted silicon during laser annealing[J]. Applied Physics Letters, 2078, 33(5): 437-440.

    [78] Larson B C, White C W, Noggle T S, et al. Time-resolved X-ray-diffraction measurement of the temperature and temperature-gradients in silicon during pulsed laser annealing[J]. Applied Physics Letters, 2083, 42(3): 282-284.

    [79] Becker R S, Higashi G S, Golovchenko J A. Low-energy electron-diffraction during pulsed laser annealing-a time-resolved surface structural study[J]. Physical Review Letters, 2084, 52(4): 307-310.

    [80] Theodorakos I, Zergioti I, Vamvakas V, et al. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications[J]. Journal of Applied Physics, 2014, 115(4): 043108.

    [81] Palani I A, Vasa N J, Singaperumal M. Crystallization and ablation in annealing of amorphous-Si thin film on glass and crystalline-Si substrates irradiated by third harmonics of Nd3+∶YAG laser[J]. Materials Science in Semiconductor Processing, 2008, 11(4): 107-120.

    [82] Brown M S, Arnold C B. Fundamentals of laser-material interaction and application to multiscale surface modification[M]. Sugioka K, Meunier M, Piqué A. Laser Precision Microfabrication. Cham: Springer, 2010: 91-120.

    [83] Wood R F, Kirkpatrick J R, Giles G E. Macroscopic theory of pulsed-laser annealing.Ⅰ. Thermal transport and melting[J]. Physical Review B, 2081, 23(6): 2923-2942.

    [84] Wood R F, Kirkpatrick J R, Giles G E. Macroscopic theory of pulsed-laser annealing.Ⅱ. Dopant diffusion and segregation[J]. Physical Review B, 2081, 23(10): 5555-5569.

    [85] Wood R F. Macroscopic theory of pulsed-laser annealing.Ⅲ. Nonequilibrium segregation effects[J]. Physical Review B, 2082, 25(4): 2786-2811.

    [86] Siegal Y, Glezer EN, Mazur E. Dielectric-constant of Gaas during a subpicosecond laser-induced phase-transition[J]. Physical Review B, 2094, 49(23): 20403-20406.

    [87] van Vechten J A, Tsu R, Saris F W. Nonthermal pulsed laser annealing of Si; plasma annealing[J]. Physics Letters A, 2079, 74(6): 422-426.

    [88] Lo H W, Compaan A. Raman measurement of lattice temperature during pulsed laser-heating of silicon[J]. Physical Review Letters, 2080, 44(24): 2004-2007.

    [89] Yajima T, Yoshihara K, Harris C B, et al. Ultrafast phenomena VI[J]. Applied Optics, 2089, 28(12): 2262.

    [90] Taylor R. Photonics: Nonlinear optics and ultrafast phenomena[M]. New York: Nova Science Publishers, 2091.

    [91] Wang J K. Femtosecond nonlinear optics in gases and solids[D]. Cambridge: Harvard University, 2092.

    [92] Shank C V, Yen R, Hirlimann C. Time-resolved reflectivity measurements of femtosecond-optical-pulse induced phase-transitions in silicon[J]. Physical Review Letters, 2083, 50(6): 454-457.

    [93] Malvezzi A M. Energy beam-solid interactions and transient thermal processing[M]. Chester A N, Letokhov V S, Martellucci S, New York: Plenum Press, 2088: 155-205.

    [94] Downer M C, Shank CV Ultrafast heating of silicon on sapphire by femtosecond optical pulses[J]. Physical Review Letters, 2086, 56(7): 761-764.

    [95] Grassano, U. M. Excited-State Spectroscopy in Solids[M]. Amsterdam: North-Holland, 2087: 335-354.

    [96] Preston J S, van Driel H M , Sipe J E. Order-disorder transitions in the melt morphology of laser-irradiated silicon[J]. Phys Rev Lett, 2087, 58(1): 69-72.

    [97] van Vechten J A, Tsu R, Saris F W, et al. Reasons to believe pulsed laser annealing of Si does not involve simple thermal melting[J]. Physics Letters A, 2079, 74(6): 420-421.

    [98] van Vechten J A, Tsu R, Saris F W. Nonthermal pulsed laser annealing of Si; plasma annealing[J]. Physics Letters A, 2079, 74(6): 422-426.

    [99] Levenson M D, et al. Resonances-a volume in honor of the 70th birthday of nicolaas bloembergen[M]. Singapore: World Scientific, 2090: 337-347.

    [100] Zhang Y, Liu L, Zou G, et al. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy[J]. Journal of Applied Physics, 2015, 120(2): 023109.

    [101] Horita S, Nakata Y, Shimoyama A. Alignment of grain boundary in a Si film crystallized by a linearly polarized laser beam on a glass substrate[J]. Applied Physics Letters, 2001, 78(15): 2250-2252.

    [102] Chen M, Rubin K A, Barton R W. Compound materials for reversible, phase-change optical data storage[J]. Applied Physics Letters, 2086, 49(9): 502-504.