• Laser & Optoelectronics Progress
  • Vol. 52, Issue 7, 73101 (2015)
Huang Xiangjun*, Zhang Yaoju, and An Hongchang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.073101 Cite this Article Set citation alerts
    Huang Xiangjun, Zhang Yaoju, An Hongchang. Reduction of Reflection in Amorphous Silicon Thin Film Solar Cell with Double Grating Structure[J]. Laser & Optoelectronics Progress, 2015, 52(7): 73101 Copy Citation Text show less
    References

    [1] Okamoto S, Mikami R, Ozaki R, et al.. High-efficiency multi-crystalline silicon solar cells using screen-printed electrode and wet etching textured surface[C]. Proc IEEE 4th World Conf Photovolatic Energy Conversion, 2006: 1259-1262.

    [2] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32 (3): 510-519.

    [3] Green M, Emery K, Hishikawa Y, et al.. Solar cell efficiency tables[J]. Progress in Photovotaics: Research and Applications, 2012, 20(1): 12-20.

    [4] Doshi P, Jellison G E, Rohatgi A. Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics[J]. Applied Optics, 1997, 36(30): 7826-7837.

    [5] Mahdjoub A. Graded refraction index antireflection coatings based on silicon and titanium oxides[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2007, 10(1): 60-66.

    [6] Aiken D J. High performance anti-reflection coatings for broadband multi-junction solar cells[J]. Solar Energy Materials and Solar Cells, 2000, 64(4): 393-404.

    [7] Chhajed S, Schubert M F, Kim J K, et al.. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl Phys Lett, 2008, 93(25): 251108.

    [8] Peng K, Xu Y, Wu Y, et al.. Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small, 2005, 1(11): 1062-1067.

    [9] Min W, Jing B, Jiang P. Bioinspired self-cleaning antireflection coatings[J]. Adv Mater, 2008, 20(20): 3914-3918.

    [10] Sun C, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon[J]. Appl Phys Lett, 2008, 92(6): 061112.

    [11] Phillips B M, Jiang P, Jiang B. Biomimetic broadband antireflection gratings on solar-grade multicrystalline silicon wafers[J]. Appl Phys Lett, 2011, 99(19): 191103.

    [12] Fu Xiuhua, Sun Yingjie, Liu Dongmei, et al.. Study ang fabrication of visible and Infrared Broadband antireflection coating[J]. Acta Optica Sinica, 2013, 33(3): 0331002.

    [13] Yeung K M, Luk W C, Tam K C, et al.. 2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 699-703.

    [14] Kanamori Y, Roy M, Chen Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication[J]. Microelectronic Engineering, 2005, 78-79(728): 287-293.

    [15] Striemer C C, Faychet P M. Dynamic etching of silicon for broadband antireflection applications[J]. Appl Phys Lett, 2002, 81(16): 2980-2982.

    [16] Song Y M, Jang S J, Yu J S, et al.. Bioinspired parabola subwavelength structures for improved broadband antireflection[J]. Small, 2010, 6(9): 984-987.

    [17] Meng X, Drouard E, Gomard G, et al.. Combined front and back diffraction gratings for broad band light trapping in thin film solar cell[J]. Opt Express, 2012, 20(S5): A560-A571.

    [18] Gomard G, Drouard E, Letartre X, et al.. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells[J]. Journal of Applied Physics, 2010, 108(12): 123102.

    [19] Gjessing J, Marstein E S, Sudb A. 2D back-side diffraction grating for improved light trapping in thin silicon solar cells [J]. Opt Express, 2010, 18(6): 5481-5495.

    [20] Shi Y, Zhang C, Zhang H, et al.. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J]. Science Magazine, 2000, 288(5463): 119-122.

    [21] Huang Chong, Zou Min, Ouyang Yandon, et al.. Fabrication and polarized optical texture of fresnel liquid crystal lens [J]. Journal of Shantou University (Natural Science Edition), 2013, 28(2): 8-12.

    [22] Qu Biao, Pu Jixiong. Spectral anomalies of the fully, spatially coherent light diffracted by a fresnel zone plate[J]. Journal of Huaqiao University (Natural Science), 2007, 28(1): 46-50.

    [23] Shen Hongbin, Zhou Jingtao, Zhang Lei, et al.. Design of amplitude-fresnel zone plate for rapid realization with Matlab [J]. Science Technology and Engineering, 2008, 8(15): 4281-4283.

    [24] Fu Wenyu, Liu Zhengqi. Numerical simulation for difffraction properties of laser zone-plate[J]. Acta Photonica Sinica, 2006, 35(11): 1756-1760.

    [25] Zhang Qinqin, Zhu Siwei, Yuan Xiaocong. Focal depth properties of modified fractal zone plate[J]. Acta Optica Sinica, 2011, 31(8): 0823001.

    [26] Zhang W, Jiang L, Li X. Broadband light harvesting enhancement with front double and back metallic gratings in thin film solar cells[J]. Optics Communications, 2014, 317: 83-87.

    [27] Bhattacharya J, Chakravariy N, Pattnaik S, et al.. A photonic-plasmonic structure for enhancing light absorption in thin film solar cells[J]. Journal of Applied Physics, 2011, 99(13): 131114.

    CLP Journals

    [1] He Xiaojin, Liu Min, Zhang Yaoyao, Liu Xueqin. Study on Improving Light Absorption of Si Thin-Film Solar Cells with Metal Grating and Photonic Crystals back Reflectors[J]. Laser & Optoelectronics Progress, 2016, 53(5): 50501

    [2] Ren Naifei, Zu Wei, Li Baojia, Huang Lijing, Cao Haidi. Research on Laser Irradiation Treatment and Photoelectric Property of Ti/FTO Composite Films[J]. Chinese Journal of Lasers, 2017, 44(5): 502004

    Huang Xiangjun, Zhang Yaoju, An Hongchang. Reduction of Reflection in Amorphous Silicon Thin Film Solar Cell with Double Grating Structure[J]. Laser & Optoelectronics Progress, 2015, 52(7): 73101
    Download Citation