• Laser & Optoelectronics Progress
  • Vol. 61, Issue 3, 0324001 (2024)
Yuanjia Feng, Junsheng Zheng, Ruoxue Yang, and Pan Wang*
Author Affiliations
  • State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/LOP232668 Cite this Article Set citation alerts
    Yuanjia Feng, Junsheng Zheng, Ruoxue Yang, Pan Wang. Plasmonic Tunnel Junctions (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0324001 Copy Citation Text show less
    References

    [1] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 408, 131-314(2005).

    [2] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [3] Brongersma M L, Shalaev V M. The case for plasmonics[J]. Science, 328, 440-441(2010).

    [4] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 1, 641-648(2007).

    [5] Guo X, Ying Y B, Tong L M. Photonic nanowires: from subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 47, 656-666(2014).

    [6] Hill M T, Gather M C. Advances in small lasers[J]. Nature Photonics, 8, 908-918(2014).

    [7] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).

    [8] Wu H, Gao Y X, Xu P Z et al. Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale[J]. Advanced Optical Materials, 7, 1900334(2019).

    [9] MacDonald K F, Sámson Z L, Stockman M I et al. Ultrafast active plasmonics[J]. Nature Photonics, 3, 55-58(2009).

    [10] Melikyan A, Alloatti L, Muslija A et al. High-speed plasmonic phase modulators[J]. Nature Photonics, 8, 229-233(2014).

    [11] Ayata M, Fedoryshyn Y, Heni W et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 358, 630-632(2017).

    [12] Falk A L, Koppens F H L, Yu C L et al. Near-field electrical detection of optical plasmons and single-plasmon sources[J]. Nature Physics, 5, 475-479(2009).

    [13] Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas[J]. Science, 332, 702-704(2011).

    [14] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [15] Liu N, Tang M L, Hentschel M et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nature Materials, 10, 631-636(2011).

    [16] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [17] Baumberg J J, Aizpurua J, Mikkelsen M H et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 18, 668-678(2019).

    [18] Li G C, Zhang Q, Maier S A et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry[J]. Nanophotonics, 7, 1865-1889(2018).

    [19] Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 498, 82-86(2013).

    [20] Yang B, Chen G, Ghafoor A et al. Sub-nanometre resolution in single-molecule photoluminescence imaging[J]. Nature Photonics, 14, 693-699(2020).

    [21] Huang K C Y, Seo M K, Sarmiento T et al. Electrically driven subwavelength optical nanocircuits[J]. Nature Photonics, 8, 244-249(2014).

    [22] Liu Y, Zhang J S, Liu H P et al. Electrically driven monolithic subwavelength plasmonic interconnect circuits[J]. Science Advances, 3, e1701456(2017).

    [23] Koller D M, Hohenau A, Ditlbacher H et al. Organic plasmon-emitting diode[J]. Nature Photonics, 2, 684-687(2008).

    [24] Lambe J, McCarthy S L. Light emission from inelastic electron tunneling[J]. Physical Review Letters, 37, 923-925(1976).

    [25] Coombs J H, Gimzewski J K, Reihl B et al. Photon emission experiments with the scanning tunnelling microscope[J]. Journal of Microscopy, 152, 325-336(1988).

    [26] Gimzewski J K, Reihl B, Coombs J H et al. Photon emission with the scanning tunneling microscope[J]. Zeitschrift Für Physik B Condensed Matter, 72, 497-501(1988).

    [27] Kuhnke K, Große C, Merino P et al. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces[J]. Chemical Reviews, 117, 5174-5222(2017).

    [28] Wu S W, Nazin G V, Ho W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope[J]. Physical Review B, 77, 205430(2008).

    [29] Lutz T, Große C, Dette C et al. Molecular orbital gates for plasmon excitation[J]. Nano Letters, 13, 2846-2850(2013).

    [30] Chen C, Bobisch C A, Ho W. Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains[J]. Science, 325, 981-985(2009).

    [31] Zhang Y, Luo Y, Zhang Y et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 531, 623-627(2016).

    [32] Février P, Gabelli J. Tunneling time probed by quantum shot noise[J]. Nature Communications, 9, 4940(2018).

    [33] Davis L C. Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions[J]. Physical Review B, 16, 2482-2490(1977).

    [34] Uskov A V, Khurgin J B, Protsenko I E et al. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling[J]. Nanoscale, 8, 14573-14579(2016).

    [35] Bigourdan F, Hugonin J P, Marquier F et al. Nanoantenna for electrical generation of surface plasmon polaritons[J]. Physical Review Letters, 116, 106803(2016).

    [36] Kern J, Kullock R, Prangsma J et al. Electrically driven optical antennas[J]. Nature Photonics, 9, 582-586(2015).

    [37] Parzefall M, Bharadwaj P, Jain A et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions[J]. Nature Nanotechnology, 10, 1058-1063(2015).

    [38] Qian H L, Hsu S W, Gurunatha K et al. Efficient light generation from enhanced inelastic electron tunnelling[J]. Nature Photonics, 12, 485-488(2018).

    [39] Qian H L, Li S L, Hsu S W et al. Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling[J]. Nature Communications, 12, 3111(2021).

    [40] Wang P, Krasavin A V, Nasir M E et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials[J]. Nature Nanotechnology, 13, 159-164(2018).

    [41] Krasavin A V, Wang P, Nasir M E et al. Tunneling-induced broadband and tunable optical emission from plasmonic nanorod metamaterials[J]. Nanophotonics, 9, 427-434(2020).

    [42] Bharadwaj P, Bouhelier A, Novotny L. Electrical excitation of surface plasmons[J]. Physical Review Letters, 106, 226802(2011).

    [43] Du W, Wang T, Chu H S et al. Highly efficient on-chip direct electronic-plasmonic transducers[J]. Nature Photonics, 11, 623-627(2017).

    [44] Liu L F, Krasavin A V, Li J L et al. Waveguide-integrated light-emitting metal-insulator-graphene tunnel junctions[J]. Nano Letters, 23, 3731-3738(2023).

    [45] Huang B H, Gao S P, Liu Y et al. Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction[J]. Optics Letters, 44, 2330-2333(2019).

    [46] Huang B H, Liu Y, Chua S et al. Plasmonic-enhanced light emission from a waveguide-integrated tunnel junction[J]. Journal of the Optical Society of America B, 37, 2171-2178(2020).

    [47] Doderer M, Parzefall M, Joerg A et al. Light emission from a waveguide integrated MOS tunnel junction[C](2019).

    [48] Doderer M, Keller K, Winiger J et al. Broadband tunable infrared light emission from metal-oxidesemiconductor tunnel junctions in silicon photonics[J]. Nano Letters, 24, 859-865(2024).

    [49] Bragas A V, Landi S M, Martı́nez O E. Laser field enhancement at the scanning tunneling microscope junction measured by optical rectification[J]. Applied Physics Letters, 72, 2075-2077(1998).

    [50] Ward D R, Hüser F, Pauly F et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 5, 732-736(2010).

    [51] Arielly R, Ofarim A, Noy G et al. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies[J]. Nano Letters, 11, 2968-2972(2011).

    [52] Noy G, Ophir A, Selzer Y. Response of molecular junctions to surface plasmon polaritons[J]. Angewandte Chemie (International Ed. in English), 49, 5734-5736(2010).

    [53] Vadai M, Nachman N, Ben-Zion M et al. Plasmon-induced conductance enhancement in single-molecule junctions[J]. The Journal of Physical Chemistry Letters, 4, 2811-2816(2013).

    [54] Stolz A, Berthelot J, Mennemanteuil M M et al. Nonlinear photon-assisted tunneling transport in optical gap antennas[J]. Nano Letters, 14, 2330-2338(2014).

    [55] Dasgupta A, Mennemanteuil M M, Buret M et al. Optical wireless link between a nanoscale antenna and a transducing rectenna[J]. Nature Communications, 9, 1992(2018).

    [56] Rybka T, Ludwig M, Schmalz M F et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime[J]. Nature Photonics, 10, 667-670(2016).

    [57] Ludwig M, Aguirregabiria G, Ritzkowsky F et al. Sub-femtosecond electron transport in a nanoscale gap[J]. Nature Physics, 16, 341-345(2020).

    [58] Garg M, Kern K. Attosecond coherent manipulation of electrons in tunneling microscopy[J]. Science, 367, 411-415(2020).

    Yuanjia Feng, Junsheng Zheng, Ruoxue Yang, Pan Wang. Plasmonic Tunnel Junctions (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0324001
    Download Citation