• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 051406 (2020)
Tiancai Zhu1、2, Xiaonan Wang2、*, Wengang Chen1, Zengrong Hu2, Yong Xie1, Bin Yang2, and Qiuxiang Yu2、3
Author Affiliations
  • 1School of Machinery and Traffic, Southwest Forestry University, Kunming, Yunnan 650224, China
  • 2School of Iron and Steel, Soochow University, Suzhou, Jiangsu 215021, China
  • 3School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
  • show less
    DOI: 10.3788/LOP57.051406 Cite this Article Set citation alerts
    Tiancai Zhu, Xiaonan Wang, Wengang Chen, Zengrong Hu, Yong Xie, Bin Yang, Qiuxiang Yu. Effect of Heat Inputs on Microstructure and Properties of QP1180 Steel Laser Welded Joints[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051406 Copy Citation Text show less
    References

    [1] Kang Y L, Zhu G M. Development trend of China's automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron & Steel, 49, 1-7(2014).

    [2] Huan P C, Wang X N, Zhu T C et al. Microstructure and mechanical properties of laser welded joint of 800 MPa grade hot-rolled high strength steel[J]. Chinese Journal of Lasers, 46, 0102002(2019).

    [3] Zhu T C, Liu H L, Wang X N et al. 6(11): 1165h5[J]. properties of 2 GPa press-hardened steel joints by RSW. Materials Research Express(2019).

    [4] Mayyas A T, Mayyas A R, Omar M. Sustainable lightweight vehicle design: a case study in Eco-Material selection for Body-In-White[M]. ∥Njuguna J. Lightweight composite structures in transport. New York: Elsevier, 267-302(2016).

    [5] Lauter C, Tröster T, Reuter C. Hybrid structures consisting of sheet metal and fibre reinforced plastics for structural automotive applications[M]. ∥Elmarakbi A. Advanced composite materials for automotive applications. Chichester: John Wiley & Sons Ltd, 149-174(2013).

    [6] Hallal A, Elmarakbi A, Shaito A et al. Advanced composite materials for automotive applications: structural integrity and crashworthiness[M]. ∥Elmarakbi A. Advanced composite materials for automotive applications. Chichester: John Wiley & Sons Ltd(2013).

    [7] Sun Z, Ion J C. Laser welding of dissimilar metal combinations[J]. Journal of Materials Science, 30, 4205-4214(1995).

    [8] Yu X, Luo J Q, Xiao X S et al. Research progress of high-power ultrafast fiber lasers[J]. Chinese Journal of Lasers, 46, 0508007(2019).

    [9] Shome M, Tumuluru M. Introduction to welding and joining of advanced high-strength steels (AHSS)[M]. ∥ Biro E, Chatterjee S, Cretteur L, et al. Welding and joining of advanced high strength steels (AHSS). New York: Elsevier, 1-8(2015).

    [10] Pouranvari M. Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities[J]. Materials Science and Technology, 33, 1705-1712(2017).

    [11] Hilditch T B, de Souza T, Hodgson P D. Properties and automotive applications of advanced high-strength steels (AHSS)[M]. ∥Biro E, Chatterjee S, Cretteur L, et al. Welding and joining of advanced high strength steels (AHSS). New York:: Elsevier, 9-28(2015).

    [12] Speer J G, Edmonds D V, Rizzo F C et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 8, 219-237(2004).

    [13] Li W D, Ma L X, Peng P et al. Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint[J]. Materials Science and Engineering: A, 717, 124-133(2018).

    [14] Guo W, Wan Z D, Peng P et al. Microstructure and mechanical properties of fiber laser welded QP980 steel[J]. Journal of Materials Processing Technology, 256, 229-238(2018).

    [15] Li X J, Huang J, Pan H et al. Microstructure and formability of laser welding joint of QP1180 high-strength steel sheet[J]. Chinese Journal of Lasers, 46, 0302006(2019).

    [16] Wang X N, Sun Q, Zheng Z et al. Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs[J]. Materials Science and Engineering: A, 699, 18-25(2017).

    [17] Huan P C, Chen W G, Wang X N et al. Effect of martensite content on microstructure and properties of laser welded dual-phase steel joints[J]. Laser & Optoelectronics Progress, 55, 111406(2018).

    [18] Guo P F, Wang X N, Zhu G H et al. Microstructures and properties of X100 pipeline steel joints by fiber laser welding[J]. Chinese Journal of Lasers, 44, 1202003(2017).

    [19] Xia M S, Kuntz M L, Tian Z L et al. Failure study on laser welds of dual phase steel in formability testing[J]. Science and Technology of Welding and Joining, 13, 378-387(2008).

    [20] Saha D C, Westerbaan D, Nayak S S et al. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels[J]. Materials Science and Engineering: A, 607, 445-453(2014).

    [21] Zhang W Y[M]. Welding metallurgy: fundamental principle(1999).

    [22] Mo S H, Yu J H, Wang J J[M]. Mechanical properties of engineering materials(2013).

    [23] Shen B L, Li L, Yue C L. Summarization of relationship between tensile strength and hardness of iron-steel materials[J]. Modern Cast Iron, 32, 93-96(2012).

    [24] Guo W, Li L, Dong S Y et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel[J]. Optics and Lasers in Engineering, 91, 1-15(2017).

    Tiancai Zhu, Xiaonan Wang, Wengang Chen, Zengrong Hu, Yong Xie, Bin Yang, Qiuxiang Yu. Effect of Heat Inputs on Microstructure and Properties of QP1180 Steel Laser Welded Joints[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051406
    Download Citation