• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3160011 (2021)
Gong Jiang, Zong Rong*, Li Hui, and Duan Tao
Author Affiliations
  • School of Information, Yunnan University, Kunming ,Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP202158.0316001 Cite this Article Set citation alerts
    Gong Jiang, Zong Rong, Li Hui, Duan Tao. Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3160011 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 1, 97-105(2007).

    [2] Ryzhii V, Otsuji T, Ryzhii M et al. Graphene terahertz uncooled bolometers. Journal of Physics D: Applied Physics, 46, 065102(2013).

    [3] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [4] Wang Y, Cui Z J, Zhu D Y et al. Multiband terahertz absorber and selective sensing performance. Optics Express, 27, 14133(2019).

    [5] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber. Physical Review Letters, 100, 207402(2008).

    [6] Huang X, Yang F, Gao B et al. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Optics Express, 27, 25902-25911(2019).

    [7] Meng Q L, Zhang Y, Zhang B et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber. Laser & Optoelectronics Progress, 56, 101603(2019).

    [8] Hu D, Wang H Y, Tang Z J et al. Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator. Applied Physics A, 122, 1-7(2016).

    [10] Meng W W, Lv J, Zhang L W et al. An ultra-broadband and polarization-independent metamaterial absorber with bandwidth of 3.7 THz. Optics Communications, 431, 255-260(2019).

    [11] Alves F, Grbovic D, Kearney B et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Optics Letters, 37, 1886-1888(2012).

    [12] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure. Chinese Journal of Lasers, 46, 0614016(2019).

    [13] Wu J J, Zhao H X, Gao J X. Enhancing light absorption of graphene using magneto-optical photonic crystals. Chinese Journal of Lasers, 47, 0403003(2020).

    [14] Weis P, Garcia-Pomar J L, Rahm M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene. Optics Express, 22, 8473-8489(2014).

    [15] Wu Y, Ruan X Z, Chen C H et al. Graphene/liquid crystal based terahertz phase shifters. Optics Express, 21, 21395-21402(2013).

    [16] Park J T, Oh I H, Lee E et al. Structure and magnetism in VO2 nanorods. Applied Physics Letters, 91, 153112(2007).

    [17] Qin Y, Li Y, Fang B Y et al. Fabrication and optical properties of vanadium dioxide thin films doped by tungsten-vanadium Co-sputtering. Acta Optica Sinica, 33, 1231002(2013).

    [18] Yao G, Ling F R, Yue J et al. Dual-band tunable perfect metamaterial absorber in the THz range. Optics Express, 24, 1518-1527(2016).

    [19] Wang R X, Li L, Liu J L et al. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Optics Express, 25, 32280-32289(2017).

    [20] Zhang K, Zhang L, Duan D et al. Wide band terahertz switch of undulated waveguide with VO2 film coated inner wall. Journal of Lightwave Technology, 36, 4401-4407(2018).

    [21] Wen Q Y, Zhang H W, Yang Q H et al. A tunable hybrid metamaterial absorber based on vanadium oxide films. Journal of Physics D: Applied Physics, 45, 235106(2012).

    [22] Liu H, Wang Z H, Li L et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Scientific Reports, 9, 5751(2019).

    [23] Chen Y F, Xue W R, Zhao C et al. Grating-type mid-infrared absorber based on hexagonal boron nitride material. Acta Optica Sinica, 39, 1005001(2019).

    [24] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF. Acta Optica Sinica, 38, 0123002(2018).

    [25] Kong X R, Dao R N, Zhang H F. A tunable double-decker ultra-broadband THz absorber based on a phase change material. Plasmonics, 14, 1233-1241(2019).

    [26] Dao R N, Kong X R, Zhang H F et al. A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide. Optik, 180, 619-625(2019).

    [27] Song Z Y, Wei M L, Wang Z S et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces. IEEE Photonics Journal, 11, 1-7(2019).

    [28] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber. Acta Optica Sinica, 40, 0816001(2020).

    Gong Jiang, Zong Rong, Li Hui, Duan Tao. Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3160011
    Download Citation