• Photonics Research
  • Vol. 10, Issue 4, 1097 (2022)
Hui-Jun Zhao1, Fei Fan1、2、*, Tian-Rui Zhang1, Yun-Yun Ji1, and Sheng-Jiang Chang1、2
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    DOI: 10.1364/PRJ.453082 Cite this Article Set citation alerts
    Hui-Jun Zhao, Fei Fan, Tian-Rui Zhang, Yun-Yun Ji, Sheng-Jiang Chang. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces[J]. Photonics Research, 2022, 10(4): 1097 Copy Citation Text show less
    References

    [1] K. Sengupta, T. Nagatsuma, D. M. Mittleman. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron., 1, 622-635(2018).

    [2] R. Y. Zhou, C. Wang, W. D. Xu, L. J. Xie. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale, 11, 3445-3457(2019).

    [3] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging: modern techniques and applications. Laser Photon. Rev., 5, 124-166(2011).

    [4] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [5] P. Doradla, K. Alavi, C. Joseph, R. Giles. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. J. Biomed. Opt., 18, 090504(2013).

    [6] Z. Y. Zhang, C. Z. Zhong, F. Fan, G. H. Liu, S. J. Chang. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens. Actuators B Chem., 330, 129315(2021).

    [7] Y. Gao, S. Kaushik, E. J. Philip, Z. Li, Y. Qin, Y. P. Liu, W. L. Zhang, Y. L. Su, X. Chen, H. Weng, D. E. Kharzeev, M. K. Liu, J. Qi. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun., 11, 720(2020).

    [8] Z. Y. Tan, F. Fan, D. Zhao, Y. Y. Ji, J. R. Cheng, S. J. Chang. High-efficiency terahertz nonreciprocal one-way transmission and active asymmetric chiral manipulation based on magnetoplasmon/dielectric metasurface. Adv. Opt. Mater., 9, 2002216(2021).

    [9] J. C. Zi, Y. F. Li, X. Feng, Q. Xu, H. C. Liu, X. X. Zhang, J. G. Han, W. L. Zhang. Dual-functional terahertz waveplate based on all-dielectric metamaterial. Phys. Rev. Appl., 13, 034042(2020).

    [10] X. P. Dong, J. R. Cheng, F. Fan, S. T. Xu, X. H. Wang, S. J. Chang. Wideband sub-THz half-wave plate using 3D-printed low-index metagratings with superwavelength lattice. Opt. Express, 27, 202-211(2019).

    [11] X. G. Zhao, J. Schalch, J. D. Zhang, H. R. Seren, G. W. Duan, R. D. Averitt, X. Zhang. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica, 5, 303-310(2018).

    [12] Y. Q. Tang, A. E. Cohen. Optical chirality and its interaction with matter. Phys. Rev. Lett., 104, 163901(2010).

    [13] M. Schaferling, D. Dregely, M. Hentschel, H. Giessen. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X, 2, 031010(2012).

    [14] X. H. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. G. Jiang, D. Y. Zhang. High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials. Adv. Opt. Mater., 7, 1900247(2019).

    [15] T. Lv, X. Chen, G. Dong, M. Liu, D. Liu, C. Ouyang, Z. Zhu, Y. Li, C. Guan, J. Han, W. Zhang, S. Zhang, J. Shi. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial. Nanophotonics, 9, 3235-3242(2020).

    [16] T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, I. Shimoyama. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun., 6, 8422(2015).

    [17] L. Q. Cong, P. Pitchappa, N. Wang, R. Singh. Electrically programmable terahertz diatomic metamolecules for chiral optical control. Research, 2019, 7084251(2019).

    [18] S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. B. Yin, A. J. Taylor, X. Zhang. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun., 3, 942(2012).

    [19] J. T. Li, J. Li, C. L. Zheng, S. L. Wang, M. Y. Li, H. L. Zhao, J. H. Li, Y. T. Zhang, J. Q. Yao. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon, 172, 189-199(2021).

    [20] S. J. Kindness, N. W. Almond, W. Michailow, B. B. Wei, K. Delfanazari, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl’Innocenti. A terahertz chiral metamaterial modulator. Adv. Opt. Mater., 8, 2000581(2020).

    [21] T. T. Kim, S. S. Oh, H. D. Kim, H. S. Park, O. Hess, B. Min, S. Zhang. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv., 3, e1701377(2017).

    [22] Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, F. Miyamaru. Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface. Phys. Rev. Appl., 11, 044008(2019).

    [23] X. Chen, H. Wang, H. Liu, C. Wang, G. Wei, C. Fang, H. Wang, C. Geng, S. Liu, P. Li, H. Yu, W. Zhao, J. Miao, Y. Li, L. Wang, T. Nie, J. Zhao, X. Wu. Generation and control of terahertz spin currents in topology-induced two-dimensional ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures. Adv. Mater., 2106172(2021).

    [24] Y. Z. Hu, M. Y. Tong, X. A. Cheng, J. Zhang, H. Hao, J. You, X. Zheng, T. Jiang. Bi2Se3-functionalized metasurfaces for ultrafast all-optical switching and efficient modulation of terahertz waves. ACS Photon., 8, 771-780(2021).

    [25] Q. Y. Mu, F. Fan, S. Chen, S. T. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, S. J. Chang. Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure. Photon. Res., 7, 325-331(2019).

    [26] L. Wang, S. J. Ge, W. Hu, M. Nakajima, Y. Q. Lu. Tunable reflective liquid crystal terahertz waveplates. Opt. Mater. Express, 7, 2023-2029(2017).

    [27] Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, S. J. Chang. Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes. Carbon, 152, 865-872(2019).

    [28] C. F. Hsieh, C. S. Yang, F. C. Shih, R. P. Pan, C. L. Pan. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate. Opt. Express, 27, 9933-9940(2019).

    [29] T. Sasaki, T. Asano, M. Sakamoto, K. Noda, T. Unuma, K. Goto, K. Tsutsui, N. Kawatsuki, H. Ono. Subwavelength liquid crystal gratings for polarization-independent phase shifts in the terahertz spectral range. Opt. Mater. Express, 10, 240-248(2020).

    [30] Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, S. J. Chang. Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles. Nanoscale, 11, 4933-4941(2019).

    [31] Z. X. Shen, S. H. Zhou, X. A. Li, S. J. Ge, P. Chen, W. Hu, Y. Q. Lu. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photon., 2, 036002(2020).

    [32] X. Q. Chen, K. D. Li, R. Zhang, S. K. Gupta, A. K. Srivastava, E. Pickwell-MacPherson. Highly efficient ultra-broadband terahertz modulation using bidirectional switching of liquid crystals. Adv. Opt. Mater., 7, 1901321(2019).

    [33] O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, V. A. Fedotov. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications. ACS Photon., 7, 3199-3206(2020).

    [34] C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, T. J. Cui. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv. Opt. Mater., 9, 2100932(2021).

    [35] J. B. Wu, Z. Shen, S. J. Ge, B. W. Chen, Z. X. Shen, T. F. Wang, C. H. Zhang, W. Hu, K. B. Fan, W. Padilla, Y. Q. Lu, B. B. Jin, J. Chen, P. H. Wu. Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett., 116, 131104(2020).

    [36] X. Zhang, F. Fan, Y. Y. Ji, S. J. Chang. Temperature-dependent chirality of cholesteric liquid crystal for terahertz waves. Opt. Lett., 45, 4988-4991(2020).

    [37] D. Xiao, Y. J. Liu, S. Yin, J. Liu, W. Ji, B. Wang, D. Luo, G. Li, X. W. Sun. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Opt. Express, 26, 25305-25314(2018).

    [38] S. Yin, D. Xiao, J. Liu, K. Li, H. He, S. Jiang, D. Luo, X. W. Sun, Y. J. Liu. Reconfigurable chiral metasurface absorbers based on liquid crystals. IEEE Photon. J., 10, 4600909(2018).

    [39] M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, R. Morandotti. Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid. Appl. Phys. Lett., 100, 241107(2012).

    [40] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    [41] Z. Wang, F. Cheng, T. Winsor, Y. Liu. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 27, 412001(2016).

    [42] M. V. Gorkunov, V. E. Dmitrienko, A. A. Ezhov, V. V. Artemov, O. Y. Rogov. Implications of the causality principle for ultra chiral metamaterials. Sci. Rep., 5, 9273(2015).

    Hui-Jun Zhao, Fei Fan, Tian-Rui Zhang, Yun-Yun Ji, Sheng-Jiang Chang. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces[J]. Photonics Research, 2022, 10(4): 1097
    Download Citation