• Photonics Research
  • Vol. 7, Issue 11, 1279 (2019)
Yuhao Guo1, Zeinab Jafari1、2, Lijuan Xu1、3, Changjing Bao4, Peicheng Liao4, Guifang Li5, Anuradha M. Agarwal6, Lionel C. Kimerling6, Jurgen Michel6, Alan E. Willner4, and Lin Zhang1、*
Author Affiliations
  • 1Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education and Key Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2School of Computer and Electrical Engineering, Shiraz University, Shiraz, Fars, Iran
  • 3School of Electronic Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
  • 4Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
  • 5College of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
  • 6Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • show less
    DOI: 10.1364/PRJ.7.001279 Cite this Article Set citation alerts
    Yuhao Guo, Zeinab Jafari, Lijuan Xu, Changjing Bao, Peicheng Liao, Guifang Li, Anuradha M. Agarwal, Lionel C. Kimerling, Jurgen Michel, Alan E. Willner, Lin Zhang. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics[J]. Photonics Research, 2019, 7(11): 1279 Copy Citation Text show less
    References

    [1] G. P. Agrawal. Nonlinear Fiber Optics(2006).

    [2] M. Marhic. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices(2007).

    [3] R. R. Alfano. The Supercontinuum Laser Source(1989).

    [4] J. Ye, S. T. Cundiff. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications(2004).

    [5] Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, L. Zhang. Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium. Nanophotonics, 7, 1461-1467(2018).

    [6] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [7] M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, L. Zhang. An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide. IEEE J. Sel. Top. Quantum Electron., 24, 8300607(2018).

    [8] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett., 25, 790-792(2000).

    [9] F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, D. J. Richardson. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Opt. Express, 13, 3728-3736(2005).

    [10] S. Kim, C. S. Kee, J. Lee. Novel optical properties of six-fold symmetric photonic quasicrystal fibers. Opt. Express, 15, 13221-13226(2007).

    [11] D. J. J. Hu, P. P. Shum, C. Lu, G. Ren. Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications. Opt. Commun., 282, 4072-4076(2009).

    [12] H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, J. Lin. Ultra-flattened chromatic dispersion control for circular photonic crystal fibers. J. Opt., 13, 055405(2011).

    [13] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous GVD in Si channel waveguides. Opt. Express, 14, 4357-4362(2006).

    [14] L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, A. E. Willner. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt. Express, 19, 11584-11590(2011).

    [15] L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express, 20, 1685-1690(2012).

    [16] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    [17] Z. Jafari, L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel, A. Zarifkar. Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared. J. Lightwave Technol., 34, 3696-3702(2016).

    [18] M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, Z. Wang. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Opt. Express, 20, 15899-15907(2012).

    [19] Z. Jafari, F. Emami. Strip/slot hybrid arsenic tri-sulfide waveguide with ultra-flat and low dispersion profile over an ultra-wide bandwidth. Opt. Lett., 38, 3082-3085(2013).

    [20] D. Castelló-Lurbe, V. Torres-Company, E. Silvestre. Inverse dispersion engineering in silicon waveguides. J. Opt. Soc. Am. B, 31, 1829-1835(2014).

    [21] Y. Zhang, H. Liu, Q. Sun, N. Huang, Z. Wang. Supercontinuum generation in strip/slot hybrid waveguide with flat and low dispersion. Appl. Opt., 54, 4850-4856(2015).

    [22] L. Xu, X. Ni, B. Liu, Y. Li, M. Hu. Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths. Opt. Eng., 55, 037109(2016).

    [23] R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, M. Asaduzzaman. Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss. IEEE J. Sel. Top. Quantum. Electron., 22, 73-80(2016).

    [24] Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, L. Zhang. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett., 41, 4939-4942(2016).

    [25] A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, C. Grillet. Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation. Conference on Lasers and Electro-Optics, FF2D.8(2019).

    [26] M. M. Borhan, J. Nafiz, K. Sangsik. Extremely high dispersions in heterogeneously coupled waveguides. Opt. Express, 27, 10426-10437(2019).

    [27] B. J. Eggleton, B. L. Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [28] R. Shankar, M. Lončar. Silicon photonic devices for mid-infrared applications. Nanophotonics, 3, 329-341(2014).

    [29] L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3, 247-268(2014).

    [30] M. Li, L. Zhang, L. Tong, D. Dai. Hybrid silicon nonlinear photonics [Invited]. Photon. Res., 6, B13-B22(2018).

    [31] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. L. Davies, S. Madden, D. J. Moss, B. J. Eggleton. Mid-infrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [32] M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, L. Zhang. Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses. Opt. Express, 25, 16116-16122(2017).

    [33] M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, C. Grillet. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica, 5, 360-366(2018).

    [34] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [35] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40, 3468-3471(2015).

    [36] D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. Fédéli, C. Kopp, L. Vivien. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures. Photon. Res., 7, 437-444(2019).

    [37] J. G. Crowder, S. D. Smith, A. Vass, J. Keddie. Infrared methods for gas detection. Mid-Infrared Semiconductor Optoelectronics, 595-613(2006).

    [38] S. Türker-Kaya, C. W. Huck. A review of mid-infrared and near-infrared imaging: principles concepts and applications in plant tissue analysis. Molecules, 22, 168(2017).

    [39] J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, D. Marris-Morini. Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics. Opt. Express, 25, 6561-6567(2017).

    [40] J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, P. K. A. Wai. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. J. Lightwave Technol., 35, 2994-3002(2017).

    [41] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, H. K. Tsang. Broadband focusing grating couplers for suspended-membrane waveguides. Opt. Lett., 37, 5181-5183(2012).

    [42] H. H. Li. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 161-289(1980).

    [43] E. D. Palik. Handbook of Optical Constants of Solids I(1985).

    [44] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [45] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 15, 16604-16644(2007).

    [46] A. W. Synder. Excitation and scattering of modes on a dielectric or optical fiber. IEEE Trans. Microwave Theory Tech., 17, 1138-1144(1969).

    CLP Journals

    [1] Jianhao Zhang, Vincent Pelgrin, Carlos Alonso-Ramos, Laurent Vivien, Sailing He, Eric Cassan. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides[J]. Advanced Photonics, 2020, 2(4): 046001

    Yuhao Guo, Zeinab Jafari, Lijuan Xu, Changjing Bao, Peicheng Liao, Guifang Li, Anuradha M. Agarwal, Lionel C. Kimerling, Jurgen Michel, Alan E. Willner, Lin Zhang. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics[J]. Photonics Research, 2019, 7(11): 1279
    Download Citation