• Laser & Optoelectronics Progress
  • Vol. 58, Issue 6, 600003 (2021)
Lü Chenyang and Zhan Renjun*
Author Affiliations
  • College of Equipment Management and Support, Engineering University of People’s Armed Police, Xi''an, Shaanxi 710086, China
  • show less
    DOI: 10.3788/LOP202158.0600003 Cite this Article Set citation alerts
    Lü Chenyang, Zhan Renjun. Theoretical Models of Light Distribution in Biological Tissues Irradiated by Laser[J]. Laser & Optoelectronics Progress, 2021, 58(6): 600003 Copy Citation Text show less
    References

    [1] Luk K, Yu O Y, Mei M L et al. Effects of carbon dioxide lasers on preventing caries: a literature review[J]. Lasers in Dental Science, 3, 83-90(2019). http://link.springer.com/article/10.1007/s41547-019-00065-8

    [2] Khalkhal E, Rezaei-Tavirani M, Zali M R et al. The evaluation of laser application in surgery: a review article[J]. Journal of Lasers in Medical Sciences, 10, S104-S111(2019). http://www.researchgate.net/publication/338835623_The_Evaluation_of_Laser_Application_in_Surgery_A_Review_Article

    [3] Houreld N N. The use of lasers and light sources in skin rejuvenation[J]. Clinics in Dermatology, 37, 358-364(2019). http://www.researchgate.net/publication/332840167_The_use_of_lasers_and_light_sources_in_skin_rejuvenation

    [4] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 0008(2017).

    [5] Srilatha A, Doshi D, Kulkarni S et al. Advanced diagnostic aids in dental caries - A review[J]. Journal of Global Oral Health, 2, 118-127(2020). http://www.researchgate.net/publication/339598657_Advanced_diagnostic_aids_in_dental_caries_-_A_review

    [6] Ma Y M, Ma L Y, Qin Z Z et al. Photothermal therapy method based on precise regulation of photoacoustic temperature[J]. Chinese Journal of Lasers, 47, 1007001(2020).

    [7] Ding L M, Dai L J, Zhang L et al. Transmission of a laser emitted from an interpolated optical fiber in tissue based on Monte Carlo method[J]. Chinese Journal of Lasers, 47, 0207040(2020).

    [8] Pu L, Jiang X P, Liu X H et al. Research on the effect of thermal damage on human skin of the low-energy laser weapon[J]. Laser Journal, 37, 13-17(2016).

    [9] Zhang F X, Han Z X, Hao W et al. Research on thermal damage effect of a new laser weapon on human skin. [C]∥2nd International Conference on Artificial Intelligence and Engineering Applications, September 23, 2017. Wuhan: Wuhan Zhicheng Times Culture Development Co. Ltd.(2017).

    [10] Jasiński M. Modelling of thermal damage in laser irradiated tissue[J]. Journal of Applied Mathematics and Computational Mechanics, 14, 67-78(2015).

    [11] Hamdy O. Simulating light diffusion in human brain tissues using Monte-Carlo simulation and diffusion equation[J]. Advances in Applied Sciences, 3, 28-33(2018). http://www.researchgate.net/publication/327449401_Simulating_Light_Diffusion_in_Human_Brain_Tissues_Using_Monte-Carlo_Simulation_and_Diffusion_Equation

    [12] Gökçe M C, Baykal Y, Ata Y. Laser array beam propagation through liver tissue[J]. Journal of Visualization, 23, 331-338(2020). http://link.springer.com/article/10.1007/s12650-020-00630-5

    [13] Korczak A, Jasiński M. Modelling of biological tissue damage process with application of interval arithmetic[J]. Journal of Theoretical and Applied Mechanics, 57, 249-261(2019). http://www.researchgate.net/publication/330528086_Modelling_of_biological_tissue_damage_process_with_application_of_interval_arithmetic

    [14] Li X X. Numerical analysis and experimental research on laser induced thermal effect in bio-tissues[D]. Tianjin: Tianjin University(2004).

    [15] Wang Y F. Light and temperature distribution by laser ablation under 1064 nm[D]. Shanghai: Shanghai Jiao Tong University(2013).

    [16] Zhang J Z. Photo-thermal interactions of laser ablation and selective photothermolysis during laser treatments of skin diseases[D]. Beijing: Tsinghua University(2009).

    [17] Dong X X. Research on the method and technology of dual-wavelength laser pain stimulation[D]. Beijing: Peking Union Medical College(2014).

    [18] Wang H. Study on the temperature distribution in skin tissue induced by laser based on thermal pain stimulation[D]. Beijing: Peking Union Medical College(2017).

    [19] Ishimaru A. Diffusion of light in turbid material[J]. Applied Optics, 28, 2210-2215(1989). http://www.researchgate.net/publication/44680317_Diffusion_of_light_in_turbid_media

    [20] Bonner R F, Nossal R, Havlin S et al. Model for photon migration in turbid biological media[J]. Journal of the Optical Society of America A, 4, 423-432(1987).

    [21] Luo Q, Gong H, Liu X. Simulation and inspection of laser transport in biological tissue[J]. Applied Optics, 24, 125-129(1995).

    [23] Li X S, Ma L. Scaling law for photon transmission through optically turbid slabs based on random walk theory[J]. Applied Sciences, 2, 160-165(2012). http://www.oalib.com/paper/150382

    [24] Sun X Q, Li X S, Ma L. A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs[J]. Optics Express, 19, 23932-23937(2011).

    [25] Welch A J. Optical-thermal response of laser-irradiated tissue[M]. Dordrecht: Springer Netherlands(2011).

    [26] Prahl S A, Welch A J. Determining the optical properties of turbid media by using the adding-doubling method[J]. Applied Optics, 32, 559-568(1993).

    [27] Xu K X, Gao F, Zhao H J[M]. Biomedical photonics(2011).

    [28] Metropolis N, Ulam S. The Monte Carlo method[J]. Journal of the American Statistical Association, 44, 335-341(1949).

    [29] Graaff R. Koelink M H, de Mul F F M, et al. Condensed Monte Carlo simulations for the description of light transport[J]. Applied Optics, 32, 426-434(1993).

    [30] Groenhuis R A J, Ferwerda H A, Ten Bosch J J. Scattering and absorption of turbid materials determined from reflection measurements. 1: theory[J]. Applied Optics, 22, 2456-2462(1983).

    [31] Meier R R, Lee L S, Anderson D E. Atmospheric scattering of middle UV radiation from an internal source[J]. Applied Optics, 17, 3216-3225(1978).

    [32] Qu J Y. MacAulay C E, Lam S, et al. Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements[J]. Optical Engineering, 34, 3334-3344(1995).

    [33] Tuchin V V[M]. Handbook of optical biomedical diagnostics(2002).

    [34] Jacques S L, Wang L H. Monte Carlo modeling of light transport in tissuesoptical-thermal response of laser-irradiated tissue[M]. New York: Springer, 73-100(1995).

    [35] Wang L, Jacques S L. Monte Carlo modeling of light transport in multi-layered tissues in standard C[M]. Houston: University of Texas, 4-11(1992).

    [36] Ansari M A, Zarei M, Akhlaghipour N et al. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain[J]. Journal of Physics D: Applied Physics, 50, 495401(2017). http://www.researchgate.net/publication/320474077_Skull_and_cerebrospinal_fluid_effects_on_microwave_radiation_propagation_in_human_brain

    [37] Churmakov D Y, Meglinski I V, Greenhalgh D A. Influence of refractive index matching on the photon diffuse reflectance[J]. Physics in Medicine and Biology, 47, 4271-4285(2002). http://www.ncbi.nlm.nih.gov/pubmed/12502049

    [38] Meglinsky I V, Matcher S J. Modelling the sampling volume for skin blood oxygenation measurements[J]. Medical and Biological Engineering and Computing, 39, 44-50(2001).

    [39] Meglinskiǐ I V, Matcher S D. Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method[J]. Optics and Spectroscopy, 91, 654-659(2001).

    [40] Lin Y, Northrop W F, Li X. Markov chain solution of photon multiple scattering through turbid slabs[J]. Optics Express, 24, 26942-26947(2016).

    [41] Xu F, Davis A B, Sanghavi S V et al. Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system[J]. Applied Optics, 51, 3491-3507(2012). http://www.ncbi.nlm.nih.gov/pubmed/22695587

    [42] Pushkareva A, Kozyreva O. Monte Carlo mathematical modeling of the interactions between light and skin tissue of newborns[J]. Proceedings of SPIE, 10062, 1006216(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2609241

    [43] Cook P D, Bixler J N, Thomas R J et al. Prediction of tissue optical properties using Monte Carlo modeling of photon transport in turbid media and integrating spheres (Conference Presentation)[J]. Proceedings of SPIE, 11238, 112380P(2020).

    [44] Zhu C G, Liu Q. A hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multi-layered tissue model with tumor-like heterogeneities[J]. Proceedings of SPIE, 8221, 82210Z(2012). http://www.zhangqiaokeyan.com/academic-conference-foreign_optical-interactions-with-tissue-cells-xxiii_thesis/0205133876.html

    [45] Wehner M, Betz P, Aden M. Influence of laser wavelength and beam profile on the coagulation depth in a soft tissue phantom model[J]. Lasers in Medical Science, 34, 335-341(2019). http://link.springer.com/article/10.1007/s10103-018-2598-2

    [46] Terziev V. Modeling of temperature distribution in biotissues[J]. International E-Journal of Advances in Social Sciences, 5, 731-737(2019).

    [47] Chen B, Zhang Y, Li D. Numerical investigation of the thermal response to skin tissue during laser lipolysis[J]. Journal of Thermal Science, 27, 470-478(2018).

    [48] Burhan M T, Tozburun S. Monte-Carlo based simulations of photothermal response of nerve tissue for laser wavelengths of 1455 nm, 1490 nm, 1550 nm[J]. Proceedings of SPIE, 11238, 1123814(2020).

    [49] Lim H S. Estimation of photon distribution within biological tissue using Monte Carlo simulation[J]. Biomedical Journal of Scientific & Technical Research, 1, 1021-1023(2017). http://www.researchgate.net/publication/321771121_Estimation_of_Photon_Distribution_within_Biological_Tissue_Using_Monte_Carlo_Simulation

    [50] Halim A, Laili M H, Rusop M. Validation of CW-light penetration based on fat layer variation in human skin model using Monte Carlo method[J]. AIP Conference Proceedings, 2151, 020009(2019). http://www.researchgate.net/publication/335485861_Validation_of_CW-light_penetration_based_on_fat_layer_variation_in_human_skin_model_using_Monte_Carlo_method

    [51] Ash C, Dubec M, Donne K et al. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods[J]. Lasers in Medical Science, 32, 1909-1918(2017).

    [52] Hamdy O, Youssef D, El-Azab J et al. Detection of breast diseases using numerical study of light propagation[C]. ∥2018 9th Cairo International Biomedical Engineering Conference (CIBEC), December 20-22, 2018, Cairo, Egypt., 53-56(2018).

    [53] Tuchin V V. Tissue optics[C]. ∥Society of Photo-Optical Instrumentation Engineers,(2015).

    [54] Yaroslavsky I V, Yaroslavsky A N, Goldbach T et al. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements[J]. Applied Optics, 35, 6797-6809(1996).

    [55] Kienle A, Patterson M S. Determination of the optical properties of turbid media from a single Monte Carlo simulation[J]. Physics in Medicine and Biology, 41, 2221-2227(1996).

    [56] Pifferi A, Taroni P, Valentini G et al. Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model[J]. Applied Optics, 37, 2774-2780(1998).

    [57] Alerstam E, Andersson-Engels S, Svensson T. White Monte Carlo for time-resolved photon migration[J]. Journal of Biomedical Optics, 13, 041304(2008). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ025129779

    [58] Palmer G M, Ramanujam N. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: theory and validation on synthetic phantoms[J]. Applied Optics, 45, 1062-1071(2006). http://www.onacademic.com/detail/journal_1000035232990310_1582.html

    [59] Wang Q Z, Agrawal A, Wang N S et al. Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 627-634(2010). http://ieeexplore.ieee.org/document/5290017

    [60] Liu Q, Ramanujam N. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media[J]. Journal of Biomedical Optics, 17, 010501(2007).

    [61] Jiang Z, Smelyanskiy V N, Isakov S V et al. Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations[J]. Physical Review A, 95, 012322(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.012322

    [62] Sabzevari I, Sharma S. Improved speed and scaling in orbital space variational Monte Carlo[J]. Journal of Chemical Theory and Computation, 14, 6276-6286(2018).

    [63] Rearden B T. (2016-04-01)[2020-07-14]. https:∥www.osti.gov/biblio/1424483..

    [64] Sassaroli A, Blumetti C, Martelli F et al. Monte Carlo procedure for investigating light propagation and imaging of highly scattering media[J]. Applied Optics, 37, 7392-7400(1998).

    [65] Hayakawa C K, Spanier J, Bevilacqua F et al. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues[J]. Optics Letters, 26, 1335-1337(2001). http://europepmc.org/abstract/med/18049600

    [66] Ostermeyer M R, Jacques S L. Perturbation theory for diffuse light transport in complex biological tissues[J]. Journal of the Optical Society of America A, 14, 255-261(1997). http://europepmc.org/abstract/MED/8988619

    [67] Seo I, You J S, Hayakawa C et al. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model[J]. Journal of Biomedical Optics, 12, 014030(2007). http://europepmc.org/abstract/med/17343505

    [68] Kumar Y P, Vasu R M. Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method[J]. Journal of Biomedical Optics, 9, 778733(2004). http://www.ncbi.nlm.nih.gov/pubmed/15447022

    [69] Sassaroli A. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media[J]. Optics Letters, 36, 2095-2097(2011).

    [70] Song Y M, Li J W, Cai F H. Fast perturbation Monte Carlo simulation for heterogeneous medium and its utilization in functional near-infrared spectroscopy[J]. Journal of Physics: Conference Series, 680, 012019(2016).

    [71] Perfetti C M, Rearden B T. Development of a generalized perturbation theory method for sensitivity analysis using continuous-energy Monte Carlo methods[J]. Nuclear Science and Engineering, 182, 354-368(2016).

    [72] Leino A A, Lunttila T, Mozumder M et al. Perturbation Monte Carlo method for quantitative photoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 39, 2985-2995(2020). http://www.researchgate.net/publication/340155558_Perturbation_Monte_Carlo_Method_for_Quantitative_Photoacoustic_Tomography

    [73] Wan W B, Liu L L, Wang Y H et al. Time-resolved early-photon scheme for high-resolution fluorescence molecular tomography with perturbation Monte Carlo modeling: Experimental validations using a multichannel TCSPC system[J]. Infrared Physics & Technology, 98, 323-333(2019). http://www.sciencedirect.com/science/article/pii/S135044951930043X

    [74] Duane S, Kennedy A D, Pendleton B J et al. Hybrid Monte Carlo[J]. Physics Letters B, 195, 216-222(1987).

    [75] Flock S T, Wilson B C, Patterson M S. Hybrid Monte Carlo: diffusion theory modelling of light distributions in tissue[J]. Proceedings of SPIE, 0908, 20-28(1988). http://spie.org/Publications/Proceedings/Paper/10.1117/12.945337

    [76] Wang L, Jacques S L. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media[J]. Journal of the Optical Society of America A, 10, 1746-1752(1993).

    [77] Luo B, He S L. An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media[J]. Optics Express, 15, 5905-5918(2007).

    [78] Wang L V. Rapid modeling of diffuse reflectance of light in turbid slabs[J]. Journal of the Optical Society of America A, 15, 936-944(1998). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-15-4-936

    [79] di Rocco H O, Iriarte D I, Pomarico J A et al. Acceleration of Monte Carlo modeling of light transport in turbid media: an approach based on hybrid, theoretical and numerical, calculations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 307-314(2009). http://www.sciencedirect.com/science/article/pii/S0022407308002392

    [80] Tinet E, Avrillier S, Tualle J M. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media[J]. Journal of the Optical Society of America A, 13, 1903-1915(1996).

    [81] Chatigny S, Morin M, Asselin D et al. Hybrid Monte Carlo for photon transport through optically thick scattering media[J]. Applied Optics, 38, 6075-6086(1999).

    [82] Alexandrakis G, Farrell T J, Patterson M S. Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain[J]. Applied Optics, 39, 2235-2244(2000).

    [83] Zhuang S X, He P, Sun G Y et al. Hybrid Monte Carlo-deterministic method for 3D neutron transport simulation based on energy region division[J]. Annals of Nuclear Energy, 130, 271-276(2019). http://www.sciencedirect.com/science/article/pii/S0306454919301197

    [84] Prokhorenko S, Kalke K, Nahas Y et al. Large scale hybrid Monte Carlo simulations for structure and property prediction[J]. Npj Computational Materials, 4, 80(2018). http://www.nature.com/articles/s41524-018-0137-0

    [85] Lee S Y, Mycek M A. Hybrid Monte Carlo simulation with ray tracing for fluorescence measurements in turbid media[J]. Optics Letters, 43, 3846-3849(2018). http://www.ncbi.nlm.nih.gov/pubmed/30106898

    [86] Gualdrini G, Ferrari P. Monte Carlo variance reduction techniques: an overview with some practical examples[J]. Radiation Protection Dosimetry, 146, 425-433(2011).

    [87] Wang L H, Jacques S L, Zheng L Q. MCML: Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 47, 131-146(1995).

    [88] Chen N G, Bai J. Estimation of quasi-straightforward propagating light in tissues[J]. Physics in Medicine and Biology, 44, 1669-1676(1999). http://europepmc.org/abstract/MED/10442704

    [89] Chen N G. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry[J]. Applied Optics, 46, 1597-1603(2007).

    [90] Behin-Ain S, van Doorn T, Patterson J R. An indeterministic Monte Carlo technique for fast time of flight photon transport through optically thick turbid media[J]. Medical Physics, 29, 125-131(2002). http://onlinelibrary.wiley.com/doi/10.1118/1.1429623/epdf

    [91] Lima I T, Kalra A, Sherif S S. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography[J]. Biomedical Optics Express, 2, 1069-1081(2011).

    [92] Lima I T, Kalra A. Hernández-Figueroa H E, et al. Fast calculation of multipath diffusive reflectance in optical coherence tomography[J]. Biomedical Optics Express, 3, 692-700(2012).

    [93] Dubey A, Reddi S J, Póczos B et al. Variance reduction in stochastic gradient Langevin dynamics[J]. Advances in Neural Information Processing Systems, 29, 1154-1162(2016).

    [94] Chatterji N S, Flammarion N, Ma Y A et al. (2018-02-01)[2020-07-14]. http:∥www.publish.ac.cn/ArticleSubmit/Index/d9cd0022-ff1b-4ba3-8e8f-2f13a2e1ca2a/%E7%A8%BF%E4%BB%B6%E5%BE%85%E5%A4%84%E7%90%86..

    [95] Kilby S, Jin Z M, Avachat A et al. Correction to: a source biasing and variance reduction technique for Monte Carlo radiation transport modeling of emission tomography problems[J]. Journal of Radioanalytical and Nuclear Chemistry, 324, 445-446(2020). http://link.springer.com/article/10.1007/s10967-020-07064-1

    [96] Hayashi T, Kashio Y, Okada E. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region[J]. Applied Optics, 42, 2888-2896(2003).

    [97] Hardy L A, Chang C H, Myers E M et al. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations[J]. Proceedings of SPIE, 9689, 96891R(2016).

    [98] Talebi S, Gharehbash K, Jalali H R. Study on random walk and its application to solution of heat conduction equation by Monte Carlo method[J]. Progress in Nuclear Energy, 96, 18-35(2017). http://www.sciencedirect.com/science/article/pii/S014919701630275X

    [99] Marquet P, Bevilacqua F P, Depeursinge C D. Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation[J]. Proceedings of SPIE, 2626, 17-24(1995). http://spie.org/Publications/Proceedings/Paper/10.1117/12.228671

    [100] Lin L, Zhang M, Li S X. A modified condensed Monte Carlo simulation of reflectance with focus light beam from scattering medium[J]. Optik, 126, 4876-4879(2015). http://www.sciencedirect.com/science/article/pii/S0030402615012784

    [101] Khalil O S, Yeh S J, Lowery M G et al. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin[J]. Journal of Biomedical Optics, 8, 191-206(2003). http://www.ncbi.nlm.nih.gov/pubmed/12683845

    [102] Pfefer T J, Matchette L S, Bennett C L et al. Reflectance-based determination of optical properties in highly attenuating tissue[J]. Journal of Biomedical Optics, 8, 206-216(2003). http://europepmc.org/abstract/MED/12683846

    [103] Thueler P, Charvet I, Bevilacqua F P et al. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties[J]. Journal of Biomedical Optics, 8, 495-504(2003). http://www.ncbi.nlm.nih.gov/pubmed/12880356

    [104] van der Zee P. Methods for measuring the optical properties of tissue samples in the visible and near infrared wavelength range[J]. Proceedings of SPIE, 10311, 103110B(1993).

    [105] Hourdakis C J, Perris A. A Monte Carlo estimation of tissue optical properties for use in laser dosimetry[J]. Physics in Medicine and Biology, 40, 351-364(1995). http://europepmc.org/abstract/MED/7732067

    [106] Ugryumova N, Matcher S J, Attenburrow D P. Measurement of bone mineral density via light scattering[J]. Physics in Medicine and Biology, 49, 469-483(2004). http://www.ncbi.nlm.nih.gov/pubmed/15012014

    [107] Grossweiner L I, Karagiannes J L, Johnson P W et al. Gaussian beam spread in biological tissues[J]. Applied Optics, 29, 379-383(1990).

    [108] Grossweiner L I. Al-Karmi A M, Johnson P W, et al. Modeling of tissue heating with a pulsed Nd∶ YAG laser[J]. Lasers in Surgery and Medicine, 10, 295-302(1990).

    [109] Loze M K, Wright C D. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light[J]. Applied Optics, 36, 494-507(1997).

    [110] McKenzie A L. Physics of thermal processes in laser-tissue interaction[J]. Physics in Medicine and Biology, 35, 1175-1209(1990). http://www.ncbi.nlm.nih.gov/pubmed/2236204

    [111] Reynolds L, Johnson C, Ishimaru A. Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters[J]. Applied Optics, 15, 2059-2067(1976). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-15-9-2059

    [112] Beacco C, Mordon S R, Brunetaud J M. Development and experimental in-vivo evaluation of mathematical modeling of coagulation by laser[J]. Proceedings of SPIE, 1646, 138-149(1992). http://spie.org/Publications/Proceedings/Paper/10.1117/12.137453

    [113] Li X X, Fan S F, Zhao Y Q. Research on photo-thermal effect of in vivo skin irradiated by CO2 laser[J]. Journal of Optoelectronics· Laser, 16, 1257-1260(2005).

    [114] Wang J H, Ding Y, Chen S L et al. Transport for photon beams of finite size in biological tissues based on Monte Carlo[J]. Acta Photonica Sinica, 43, 167-171(2014).

    [115] Li C, Wang K H, Huang J. Simulation of the effect of spot size on temperature field and weld forming in laser tissue welding[J]. Optik, 155, 315-323(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=4e52b3b840c46d1e445f447fbee18289

    [116] Wang H, Dong X X, Yang J C et al. Finite element method simulating temperature distribution in skin induced by 980-nm pulsed laser based on pain stimulation[J]. Lasers in Medical Science, 32, 1173-1187(2017). http://link.springer.com/article/10.1007/s10103-017-2223-9

    [117] Ishimaru A. Isotropic scattering[M]. ∥Wave Propagation and Scattering in Random Media. Amsterdam: Elsevier, 220-233(1978).

    [118] Boas D A. O'Leary M A, Chance B, et al. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications[J]. Proceedings of the National Academy of Sciences, 91, 4887-4891(1994).

    [119] Patterson M S, Chance B, Wilson B C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties[J]. Applied Optics, 28, 2331-2336(1989).

    [120] Li J, Ku G, Wang L V. Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles[J]. Applied Optics, 41, 6030-6035(2002). http://europepmc.org/abstract/MED/12371565

    [121] McLean J W, Freeman J D, Walker R E. Beam spread function with time dispersion[J]. Applied Optics, 37, 4701-4711(1998).

    [122] Welch A. The thermal response of laser irradiated tissue[J]. IEEE Journal of Quantum Electronics, 20, 1471-1481(1984). http://europace.oxfordjournals.org/lookup/external-ref?access_num=10.1109/JQE.1984.1072339&link_type=DOI

    [123] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).

    [124] Yona G, Meitav N, Kahn I et al. 3(1): ENEURO. 0059-, 15, 2015(2016).

    [125] Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory[J]. Applied Optics, 36, 4587-4599(1997).

    [126] Salomatina E V, Jiang B, Novak J et al. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range[J]. Journal of Biomedical Optics, 11, 064026(2006). http://www.ncbi.nlm.nih.gov/pubmed/17212549

    [127] Yaroslavsky A N, Schulze P C, Yaroslavsky I V et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range[J]. Physics in Medicine and Biology, 47, 2059-2073(2002).

    [128] Bargo P R, Prahl S A, Goodell T T et al. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy[J]. Journal of Biomedical Optics, 10, 034018(2005). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ026513135

    [129] Yust B G, Sardar D K, Tsin A. A comparison of methods for determining optical properties of thin samples[J]. Proceedings of SPIE, 7562, 75620C(2010). http://www.zhangqiaokeyan.com/academic-conference-foreign_optical-interactions-with-tissues-cells-xxi_thesis/0205134070.html

    [130] Fine I, Kaminsky A. Speckle-based measurement of the light scattering by red blood cells in vivo[J]. Proceedings of SPIE, 7898, 78980A(2011). http://spie.org/Publications/Proceedings/Paper/10.1117/12.881991

    [131] Sun P, Yang R Q, Xie F H et al. A method for determining optical properties of human tissues by measuring diffuse reflectance with CCD[J]. Proceedings of SPIE, 7845, 784522(2010).

    [132] Ruan P Q, Li R C, Gao F et al. Two-dimensional shape-based diffuse optical tomography: methodology, silumation and pilot experiment[J]. Proceedings of SPIE, 7557, 75570R(2010). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=779685

    [133] Cong A X, Shen H, Cong W et al. Improving the accuracy of the diffusion model in highly absorbing media[J]. International Journal of Biomedical Imaging, 2007, 38168(2007).

    [134] Xu M, Alrubaiee M, Alfano R R. Fractal mechanism of light scattering for tissue optical biopsy[J]. Proceedings of SPIE, 6091, 60910E(2006). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1274143

    [135] Hyvönen N. Analysis of optical tomography with non-scattering regions[J]. Proceedings of the Edinburgh Mathematical Society, 45, 257-276(2002). http://www.researchgate.net/publication/231926082_Analysis_of_optical_tomography_with_non-scattering_regions

    [136] Karagiannes J L, Zhang Z Y, Grossweiner B et al. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms[J]. Applied Optics, 28, 2311-2317(1989).

    [137] Grabtchak S, Montgomery L G, Whelan W M. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range[J]. Physics in Medicine and Biology, 59, 2431-2444(2014). http://www.ncbi.nlm.nih.gov/pubmed/24743553

    [138] Sarmiento E, Moralez-Cruzado B, Camacho-López S et al. Nanosecond laser pulse propagating through turbid media: a numerical analysis[J]. Revista Mexicana De Fisica, 63, 89-96(2017). http://www.redalyc.org/articulo.oa?id=57050469014

    [139] Jasiński M. Numerical analysis of soft tissue damage process caused by laser action[J]. AIP Conference Proceedings, 1922, 060002(2018).

    [140] Liu L T, Li Z F, Li H. Simulation study of interaction of pulse laser with tumor-embedded gastric tissue using finite element analysis[J]. Proceedings of SPIE, 10619, 106190Y(2018). http://adsabs.harvard.edu/abs/2018SPIE10619E..0YL

    [141] Majchrzak E, Jasiński M, Turchan Ł. Modeling of laser-soft tissue interactions using the dual-phase lag equation: sensitivity analysis with respect to selected tissue parameters[J]. Defect and Diffusion Forum, 379, 108-123(2017).

    [142] Zhou J H, Zhang Y W, Chen J K. Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues[J]. Numerical Heat Transfer, Part A: Applications, 54, 1-19(2008). http://www.tandfonline.com/doi/abs/10.1080/10407780802025911

    [143] Maillet D. A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation[J]. International Journal of Thermal Sciences, 139, 424-432(2019). http://www.sciencedirect.com/science/article/pii/S1290072918318982

    [144] Lister T, Wright P, Chappell P. Optical properties of human skin[J]. Journal of Biomedical Optics, 17, 090901(2012).

    [145] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).

    [146] Bashkatov A N, Genina E A, Tuchin V V. Optical properties of skin, subcutaneous, and muscle tissues: a review[J]. Journal of Innovative Optical Health Sciences, 4, 9-38(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190110000865GcJfMi

    [147] Chen R, Huang B H, Wang Y Y et al. The optical model of human skin[J]. Acta Laser Biology Sinica, 14, 520-526(2005).

    [148] Wang Y F, Bai J F. Temperature distribution based on Monte Carlo method of optical transmission in tissues of laser ablation[J]. Chinese Journal of Medical Instrumentation, 37, 252-254, 280(2013).

    [149] Guan K W, Jiang Y Q, Sun C S et al. A two-layer model of laser interaction with skin: a photothermal effect analysis[J]. Optics & Laser Technology, 43, 425-429(2011).

    [150] Matai I, Kaur G, Seyedsalehi A et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 226, 119536(2020). http://www.sciencedirect.com/science/article/pii/S0142961219306350

    [151] Yu C, Jiang J. A perspective on using machine learning in 3D bioprinting[J]. International Journal of Bioprinting, 6, 1-8(2020). http://www.researchgate.net/publication/338527034_A_Perspective_on_Using_Machine_Learning_in_3D_Bioprinting

    [152] Wang W M, Gibbon P, Sheng Z M et al. Integrated simulation approach for laser-driven fast ignition[J]. Physical Review E, 91, 013101(2015).

    [153] Komura D, Ishikawa S. Machine learning methods for histopathological image analysis[J]. Computational and Structural Biotechnology Journal, 16, 34-42(2018). http://www.ncbi.nlm.nih.gov/pubmed/30275936

    Lü Chenyang, Zhan Renjun. Theoretical Models of Light Distribution in Biological Tissues Irradiated by Laser[J]. Laser & Optoelectronics Progress, 2021, 58(6): 600003
    Download Citation