• Laser & Optoelectronics Progress
  • Vol. 57, Issue 13, 130002 (2020)
Chunqi Zheng, Jinsheng Lu, Jun Lü**, and Qiang Li*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP57.130002 Cite this Article Set citation alerts
    Chunqi Zheng, Jinsheng Lu, Jun Lü, Qiang Li. Research Progress on Photoacoustic Conversion of Metal Nanomaterials[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130002 Copy Citation Text show less
    References

    [1] Zerda A, Kim J W, Galanzha E I et al. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics[J]. Contrast Media & Molecular Imaging, 6, 346-369(2011).

    [2] Hou Y, Kim J S, Ashkenazi S et al. Broadband all-optical ultrasound transducers[J]. Applied Physics Letters, 91, 073507(2007).

    [3] Colchester R J, Mosse C A, Bhachu D S et al. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings[J]. Applied Physics Letters, 104, 173502(2014).

    [4] Hwan Lee S, Park M A, Yoh J J et al. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 101, 241909(2012).

    [5] Chang W Y, Huang W B, Kim J et al. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers[J]. Applied Physics Letters, 107, 161903(2015).

    [6] Won Baac H, Ok J G, Park H J et al. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation[J]. Applied Physics Letters, 97, 234104(2010).

    [7] Hsieh B Y, Kim J, Zhu J D et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film[J]. Applied Physics Letters, 106, 021902(2015).

    [8] Noimark S, Colchester R J, Blackburn B J et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 26, 8390-8396(2016).

    [9] Kim D, Ye M, Grigoropoulos C P. Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation[J]. Applied Physics A: Materials Science & Processing, 67, 169-181(1998).

    [10] Lee T, Baac H W, Li Q C et al. Efficient photoacoustic conversion in optical nanomaterials and composites[J]. Advanced Optical Materials, 6, 1800491(2018).

    [11] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 58, 267-297(2007).

    [12] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003).

    [13] Li W W, Chen X Y. Gold nanoparticles for photoacoustic imaging[J]. Nanomedicine, 10, 299-320(2015).

    [14] Yan Y, Liu L, Cai Z H et al. Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon[J]. Scientific Reports, 6, 31328(2016).

    [15] Cao J, Sun T. Grattan K T V. Gold nanorod-based localized surface plasmon resonance biosensors: a review[J]. Sensors and Actuators B: Chemical, 195, 332-351(2014).

    [16] Wei C W, Lombardo M, Larson-Smith K et al. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions[J]. Applied Physics Letters, 104, 033701(2014).

    [17] Lu W, Melancon M P, Xiong C et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma[J]. Cancer Research, 71, 6116-6121(2011).

    [18] Zhong J P, Wen L W, Yang S H et al. Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 1499-1509(2015).

    [19] Yan N, Wang X J, Lin L et al. Gold nanorods electrostatically binding nucleic acid probe for in vivo MicroRNA amplified detection and photoacoustic imaging-guided photothermal therapy[J]. Advanced Functional Materials, 28, 1800490(2018).

    [20] Liang R J, Xie J, Li J et al. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response[J]. Biomaterials, 149, 41-50(2017).

    [21] Xia Y N, Li W Y, Cobley C M et al. Gold nanocages: from synthesis to theranostic applications[J]. Accounts of Chemical Research, 44, 914-924(2011).

    [22] Wang W W, Hao C L, Sun M Z et al. Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging[J]. Advanced Functional Materials, 28, 1800310(2018).

    [23] An J, Yang X Q, Cheng K et al. in vivo computed tomography/photoacoustic imaging and NIR-triggered chemo-photothermal combined therapy based on a gold nanostar-, mesoporous silica-, and thermosensitive liposome-composited nanoprobe[J]. ACS Applied Materials & Interfaces, 9, 41748-41759(2017).

    [24] Li X, Xing L X, Zheng K L et al. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy[J]. ACS Applied Materials & Interfaces, 9, 5817-5827(2017).

    [25] Wi J S, Park J, Kang H et al. Stacked gold nanodisks for bimodal photoacoustic and optical coherence imaging[J]. ACS Nano, 11, 6225-6232(2017).

    [26] Zäch M, Kasemo B et al. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms[J]. ACS Nano, 5, 2535-2546(2011).

    [27] Song J B, Yang X Y, Yang Z et al. Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy[J]. ACS Nano, 11, 6102-6113(2017).

    [28] Weber V, Feis A, Gellini C et al. Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies[J]. Physical Chemistry Chemical Physics, 17, 21190-21197(2015).

    [29] Jain P K, Lee K S. El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B, 110, 7238-7248(2006).

    [30] Ma G H, Yu H, Liu Y Q et al. Resonance radiation enhancement of metal nanometer surface plasmons[J]. Laser & Optoelectronics Progress, 55, 042601(2018).

    [31] Lu W, Huang Q, Ku G et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres[J]. Biomaterials, 31, 2617-2626(2010).

    [32] Jokerst J V. Cole A J, van de Sompel D, et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection GuidanceviaRaman imaging in living mice[J]. ACS Nano, 6, 10366-10377(2012).

    [33] Raveendran S, Lim H T, Maekawa T et al. Gold nanocages entering into the realm of high-contrast photoacoustic ocular imaging[J]. Nanoscale, 10, 13959-13968(2018).

    [34] Yuan H, Khoury C G, Hwang H et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging[J]. Nanotechnology, 23, 075102(2012).

    [35] Zhang X F, Zhang L M, Fan Q F et al. Tunable localized surface plasmon resonance of gold nanoshell particle[J]. Chinese Journal of Lasers, 38, 0910001(2011).

    [36] Preston T C, Signorell R. Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer[J]. ACS Nano, 3, 3696-3706(2009).

    [37] Wu N, Tian Y, Zou X T et al. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite[J]. Journal of the Optical Society of America B, 29, 2016-2020(2012).

    [38] Jokerst J V, Thangaraj M, Kempen P J et al. Photoacoustic imaging of mesenchymal stem cells in living mice via silica coated gold nanorods[J]. ACS Nano, 6, 5920-5930(2012).

    [39] Chen Y S, Hung Y C, Liau I et al. Assessment of the in vivo toxicity of gold nanoparticles[J]. Nanoscale Research Letters, 4, 858-864(2009).

    [40] Song J B, Huang P, Duan H W et al. Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for cancer diagnosis and therapy[J]. Accounts of Chemical Research, 48, 2506-2515(2015).

    [41] Deng H, Dai F Y, Ma G H et al. Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance[J]. Advanced Materials, 27, 3645-3653(2015).

    [42] Song J B, Yang X Y, Jacobson O et al. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy[J]. Advanced Materials, 27, 4910-4917(2015).

    [43] Hou Y, Kim J S, Ashkenazi S et al. Optical generation of high frequency ultrasound using two-dimensional gold nanostructure[J]. Applied Physics Letters, 89, 093901(2006).

    [44] Park S G, Yang S B, Ahn M S et al. Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots[J]. Nanoscale, 8, 757-761(2016).

    [45] Wang X Y, Zhang L, Wang J Q et al. Size-controlled biocompatible silver nanoplates for contrast-enhanced intravital photoacoustic mapping of tumor vasculature[J]. Journal of Biomedical Nanotechnology, 14, 1448-1457(2018).

    [46] Chen M, Guo Z D, Chen Q H et al. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy[J]. Chemical Science, 9, 4268-4274(2018).

    [47] Pan D, Cai X, Yalaz C et al. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles[J]. ACS Nano, 6, 1260-1267(2012).

    [48] Wu H Q, Wang H Y, Xie W M et al. Potential applications of photoacoustic imaging in early cancer diagnosis and treatment[J]. Laser & Optoelectronics Progress, 56, 070001(2019).

    [49] Kim T, Zhang Q Z, Li J et al. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection[J]. ACS Nano, 12, 5615-5625(2018).

    [50] Yang K, Zhu L, Nie L M et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles[J]. Theranostics, 4, 134-141(2014).

    [51] Santiesteban D Y, Dumani D S, Profili D et al. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents[J]. Nano Letters, 17, 5984-5989(2017).

    [52] Lee T, Li Q C, Guo L J. Out-coupling of longitudinal photoacoustic pulses by mitigating the phase cancellation[J]. Scientific Reports, 6, 21511(2016).

    [53] Kolomenskii A A, Schuessler H A, Mikhalevich V G et al. Interaction of laser-generated surface acoustic pulses with fine particles: surface cleaning and adhesion studies[J]. Journal of Applied Physics, 84, 2404-2410(1998).

    [54] Li F H, Pei C X, Jiang L et al. Detaching and moving of adhered particles with a photoacoustic micro-resonator[J]. Applied Physics Letters, 114, 081905(2019).

    [55] Lu J S, Li Q, Qiu C W et al. 5(3): eaau8271(2019).

    [56] Chen S L, Chang Y C, Zhang C et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite[J]. Nature Photonics, 8, 537-542(2014).

    [57] Baac H W, Ok J G, Maxwell A et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy[J]. Scientific Reports, 2, 989(2012).

    [58] McCann D, Forde M. Review of NDT methods in the assessment of concrete and masonry structures[J]. NDT & E International, 34, 71-84(2001).

    Chunqi Zheng, Jinsheng Lu, Jun Lü, Qiang Li. Research Progress on Photoacoustic Conversion of Metal Nanomaterials[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130002
    Download Citation