• Journal of Inorganic Materials
  • Vol. 34, Issue 4, 401 (2019)
Ren-Jie GENG1、2, Song-Feng E2, Chao-Wei LI2, Tao-Tao LI2, Jun WU1、*, and Ya-Gang YAO2、*
Author Affiliations
  • 1The State Key Laboratory of Refractories and Metallurgy, School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • 2Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • show less
    DOI: 10.15541/jim20180258 Cite this Article
    Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film[J]. Journal of Inorganic Materials, 2019, 34(4): 401 Copy Citation Text show less
    References

    [1] S NOVOSELOV K, K GEIM A, V MOROZOV S et al. Electric field effect in atomically thin carbon films. Science, 306, 666-667(2004).

    [2] P KEBLINSKI, R PHILLPOT S, D WOLF et al. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation. Nanostruct. Mater, 9, 651-660(1997).

    [3] Y WANG, Y DING. Structural, electronic, and magnetic properties of the semifluorinated boron nitride bilayer: a first-principles study. J. Phys. Chem.C, 117, 3114-3121(2013).

    [4] X LI, W CAI, J AN et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312-1314(2009).

    [5] B WANG X, Q WENG, X WANG et al. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano, 8, 9081-9088(2014).

    [6] Y FAN, K HE, H TAN et al. Crack-free growth and transfer of continuous monolayer graphene grown on melted copper. Chem. Mater, 26, 4984-4991(2014).

    [7] X WANG, P AMIR, J ZHANG et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett, 7, 1-7(2012).

    [8] Y GONG, G SHI, Z ZHANG et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun., 5(2014).

    [9] C ZHI, Y BANDO, C TANG et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater, 21, 2889-2893(2009).

    [10] P AHMAD, U KHANDAKER M, M AMIN Y et al. Synthesis of highly crystalline multilayered boron niride microflakes. Sci. Rep, 6(2016).

    [11] B BOINOVICH L, M EMELYANENKO A, S PASHININ A et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings. Langmuir, 28, 1206-1216(2012).

    [12] C LEE, J DRELICH, Y YAP. Superhydrophobicity of boron nitride nanotubes grown on silicon substrates. Langmuir, 25, 4853-4860(2009).

    [13] A NIGUES, A SIRIA, P VINCENT et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater, 13, 688-692(2014).

    [14] M YAMAGUCHI, F MENG, K FIRESTEIN et al. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater. Sci. Eng, 604, 9-17(2014).

    [15] B HAO, A ASTHANA, K HAZAVEH P et al. New flexible channels for room temperature tunneling field effect transistors. Sci. Rep, 6(2016).

    [16] H LEE C, S QIN, A SAVAIKAR M et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots. Adv. Mater, 25, 4544-4548(2013).

    [17] V PARASHAR, P DURAND C, B HAO et al. Switching behaviors of graphene-boron nitride nanotube heterojunctions. Sci. Rep, 5(2015).

    [18] C SHUAI, C GAO, P FENG et al. Boron nitride nanotubes reinforce tricalcium phosphate scaffolds and promote the osteogenic differentiation of mesenchymal stem cells. Biomed. Nanotechnol, 12, 934-947(2016).

    [19] S NOVOSELOV K, D JIANG, F SCHEDIN et al. Two-dimensional atomic crystals. P. Natl. Acad. Sci.USA, 102, 10451-10453(2005).

    [20] X CHEN, F DOBSON J, L RASTON C. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun, 48, 3703-3705(2012).

    [21] J SMITH R, J KING P, M LOTYA et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater, 23, 3944-3948(2011).

    [22] J RAND M, F ROBERTS J. Silicon oxynitride films from the NO-NH3-SiH4 reaction. Electrochem. Soc, 120, 446-453(1973).

    [23] L SONG, L CI, H LU et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 10, 3209-3215(2010).

    [24] C JIN, F LIN, K SUENAGA et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett., 102(2009).

    [25] N MAROM, J BERNSTEIN, J GAREL et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett, 105(2010).

    [26] V GORBACHEV R, I RIAZ, R NAIR R et al. Hunting for monolayer boron nitride: optical and raman signatures. Small, 7, 465-468(2011).

    [27] R GENG, Y XU, E Songfeng et al. Bio-inspired synthesis of highly crystallized hexagonal boron nitride nanosheets. Ceram. Int, 44, 14228-14235(2018).

    [28] X ZENG, Y YAO, Z GONG et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small, 11, 6205-6213(2016).

    [29] A ISMACH, H CHOU, P MENDE et al. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater, 4(2017).

    [30] Y ZHU, Y BANDO, L YIN et al. Field nanoemitters:ultrathin BN nanosheets protruding from Si3N4 nanowires. Nano Lett, 21, 2982-2986(2006).

    [31] Z CHEN, J ZOU. Field emitters: ultrathin BN nanosheets protruded from BN fibers. Mater. Chem, 21, 1191-1195(2011).

    [32] L JING, H LI, R TAY et al. Biocompatible hydroxylated boron nitride nanosheets/polyvinyl alcohol interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano, 11, 3742-3751(2017).

    [33] X ZENG, L YE, S YU et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale, 7, 6774-6781(2015).

    [34] L ZHANG D, W ZHA J, K LI W et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos. Sci. Technol, 156, 1-7(2018).

    [35] H SHEN, J GUO, H WANG et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Inter, 7, 5701-5704(2015).

    [36] L SONG W, P WANG, L CAO et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew. Chem. Int. Ed, 124, 6604-6607(2012).

    [37] H XIE B, X HUANG, J ZHANG G. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol, 85, 98-103(2013).

    Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film[J]. Journal of Inorganic Materials, 2019, 34(4): 401
    Download Citation