• Acta Optica Sinica
  • Vol. 40, Issue 8, 0816001 (2020)
Damin Li, Su Yuan, Rongcao Yang*, Jinping Tian, and Wenmei Zhang
Author Affiliations
  • College of Physics & Electronic Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    DOI: 10.3788/AOS202040.0816001 Cite this Article Set citation alerts
    Damin Li, Su Yuan, Rongcao Yang, Jinping Tian, Wenmei Zhang. Dynamical Optical-Controlled Multi-State THz Metamaterial Absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001 Copy Citation Text show less

    Abstract

    Based on the characteristic that the conductivity of photosensitive semiconductor material can be controlled by external pump light, a dynamic optical-controlled single-/dual-band switchable metamaterial absorber is designed by embedding the semiconductor material of gallium arsenide into the nested square ring-like cell structure. On this basis, according to the different excitation characteristics of different semiconductor materials pumped by light with different wavelengths, the first structure is expanded by introducing the second semiconductor material of germanium, and an optical-controlled multi-band metamaterial absorber is proposed. The proposed absorber possesses the absorption characteristic of arbitrary switch among the single-/dual-/triple-band absorption states by using pump light with different wavelengths to tune the conductivities of the semiconductors. The simulation results show that the proposed absorber has the characteristics of insensitive polarization and wide-angle incidence, which is expected to be applied in modulators, frequency selectors, detectors, and so on.
    Damin Li, Su Yuan, Rongcao Yang, Jinping Tian, Wenmei Zhang. Dynamical Optical-Controlled Multi-State THz Metamaterial Absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001
    Download Citation