• High Power Laser and Particle Beams
  • Vol. 32, Issue 12, 121007 (2020)
Xiaofeng Wei and Ping Li
Author Affiliations
  • Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200203 Cite this Article
    Xiaofeng Wei, Ping Li. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007 Copy Citation Text show less
    References

    [1] Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]Proceeding of the 3rd International Congress on Quantum Electronics. 1964: 1373.

    [3] Nuckolls J, Wood L, Thiessen A. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 239, 139-142(1972).

    [4] Stm E, Lindl, J D, Campbell E M, et al. Progress in labaty high gain ICF (Inertial Confinement Fusion): Prospects f the future[C]InternationaL Seminar on Nuclear War. 1988: 130.

    [6] Hunt J T, Speck D R. Present and future performance of the Nova laser system[J]. Optical Engineering, 28, 461(1989).

    [7] Manes K R. Review of upconverted Nd-Glass laser plasma experiments at Lawrence Livermore National Laboratory[J]. AIP Conference Proceedings, 90, 196(1982).

    [8] Kidder R E. Inertial Confinement Nuclear Fusion: A histical approach by its pioneers[M]. London : Scientific Publishers, 2007.

    [9] Moses E I, Wuest C R. The National Ignition Facility: Status and plans for laser fusion and high-energy-density experimental studies[J]. Fusion Science and Technology, 43, 420-427(2003).

    [10] André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering & Design, 44, 43-49(1999).

    [11] Belkov S A. Numerical modeling of the optical system of UFL2M laser facility[C]16th International Conference Laser Optics. 2014.

    [12] Norreys P A, Farhat N B, Sentoku Y. Intense laser-plasma interactions: New frontiers in high energy density physics[J]. Physics of Plasmas, 16, 041002(2009).

    [13] Clery D. Ignition facility misses goal, ponders new course[J]. Science, 337, 1444-1445(2012).

    [14] Bliss E, Hunt J, Renard P. Effects of nonlinear propagation on laser focusing properties[J]. IEEE Journal of Quantum Electronics, 12, 402-406(1976).

    [15] Simmons W, Hunt J, Warren W. Light propagation through large laser systems[J]. IEEE Journal of Quantum Electronics, 17, 1727-1744(1981).

    [16] Gross H. Numerical propagation of partially coherent laser beams through optical systems[J]. Optics & Laser Technology, 29, 257-260(1997).

    [17] Sawicki R H.The National Ignition Facility: laser system, beam line design construction[C]Proc of SPIE. 2004, 5341: 43.

    [18] Puell H, Scheingraber H, Vidal C R. Saturation of resonant third-harmonic generation in phase-matched systems[J]. Physical Review A, 22, 1165-1178(1980).

    [19] Paisner J A, Boyes J D, Kumpan S A, et al. Conceptual design of the National Ignition Facility[C]Proc of SPIE. 1995, 2633:213.

    [21] Shen Y R. The principles of nonlinear optics[M]. New Yk: John Wiley &Sons, 1984.

    [22] Wang Huan, Ji Xiaoling, Deng, Yu. Theory of the quasi-steady-state self-focusing of partially coherent light pulses in nonlinear media[J]. Optics Letters, 45, 710-713(2020).

    [23] Wang Huan, Ji Xiaoling, Zhang Hao. Propagation formulae and characteristics of partially coherent laser beams in nonlinear media[J]. Optics Letters, 44, 743-746(2019).

    [24] Eggleston J M, Kushner M J. Stimulated Brillouin scattering parasitics in large optical windows[J]. Optics Letters, 12, 410-412(1987).

    [25] Henesian M A, Swift C D, Murray J R. Stimulated rotational Raman scattering in nitrogen in long air paths[J]. Optics Letters, 10, 565-571(1985).

    [26] She C Y. Analysis of the stimulated Raman effects in an anisotropic crystal KDP[J]. IEEE Journal of Quantum Electronics, 3, 73-78(1967).

    [27] Murray J R, Smith J R, Ehrlich R B. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components[J]. Journal of the Optical Society of America B, 6, 2402-2411(1989).

    [28] Valley G C. A review of stimulated Brillouin scattering excited with a broad-band pump laser[J]. IEEE Journal of Quantum Electronics, 22, 704-712(1986).

    [29] Ziming G, Zhiwei L, Dianyang L. The research and development of the stimulated Brillouin scattering in the optical component[J]. Laser Technology, 26, 375-378(2002).

    [30] Faris G W, Jusinski L E, Hickman A P. High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals[J]. Journal of the Optical Society of America B, 10, 587-599(1993).

    [31] Dixit S N. Numerical modeling of suppression of stimulated Brillouin scattering due to finite laser bwidth[C] Proc of SPIE. 1992, 1626: 254265.

    [32] Sarah M, Luc B, Stefan S. Controlling the stimulated Brillouin scattering of self-focusing nanosecond laser pulses in silica glasses[J]. Physical Review A, 83, 063829(2011).

    [33] Ge Ziming, Lü Zhiwei, Cai Junwei. The damage of the optical components induced by the stimulated Brillouin scattering[J]. Chinese Physics, 15, 2343-2346(2006).

    [34] Thompson C E, Browning D F, Padilla E H, et al. “Failsafe” system f suppressing stimulated Brillouin scattering in large optics on the Nova laser[R]. UCRLJC107974, 1992.

    [35] Joiner J, Bhartia P K, Cebula R P. Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements[J]. Applied Optics, 34, 4513-4525(1995).

    [36] Henesian M, Swift C D, Murray J R. Summary of stimulated Raman scattering experiments in the Nova airpath projected Nova Nova Ⅱ system perfmance limits[R]. UCRLTR23411, 2007.

    [37] Lin Y, Kessler T J, Lawrence G N. Raman scattering in air: four-dimensional analysis[J]. Applied Optics, 33, 4781-4791(1994).

    [38] Thiell G, Graillot H, Joly P. Laser physics studies with Phebus as part of the megajoule laser project[J]. Fusion Engineering & Design, 44, 157-162(1999).

    [39] Deng X W, Wang F, Jia H T. Temporal, spectral and spatial characterization of high-energy laser pulse with small bandwidth propagating through long path[J]. Chinese Physics Letters, 29, 124211(2012).

    [40] Wang J, Zhang X M, Han W. Experimental observation of near-field deterioration induced by stimulated rotational Raman scattering in long air paths[J]. Chinese Physics Letters, 28, 084211(2011).

    [41] Manes K R, Spaeth M L, Adams J J. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).

    [42] Raymer M G, Mostowski J, Carlsten J L. Theory of stimulated Raman scattering with broad-band lasers[J]. Physical Review A, 19, 2304-2316(1979).

    [43] Georges A T. Theory of stimulated Raman scattering in a chaotic incoherent pump field[J]. Optics Communications, 41, 61-66(1982).

    [44] Raymer M G, Mostowski J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation[J]. Physical Review A, 24, 1980-1993(1981).

    [45] Barker C E, Sacks R A, Wonterghem B M V, et al. Transverse stimulated Raman scattering in KDP[C]Proc of SPIE.1995, 2633: 501.

    [46] Demos S G, Raman R N, Negres R A. Estimation of the transverse stimulated Raman scattering gain coefficient in KDP DKDP at 2ω, 3ω, 4ω[C]Proc of SPIE. 2015: 81900S.

    [47] Demos S G, Raman R N, Yang S T. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals[J]. Optics Express, 19, 21050(2011).

    [48] Novikov V N, Belkov S A, Buiko S A, et al. Transverse SRS in KDP KDP crystals[C]Proc of SPIE. 1999, 3492: 10091018.

    [49] Han W, Wang F, Zhou L. Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal[J]. Optics Express, 21, 30481-30491(2013).

    [50] Han W, Zhou L D, Li F Q. Laser-induced damage of a large-aperture potassium dihydrogen phosphate crystal due to transverse stimulated Raman scattering[J]. Laser Physics, 23, 116001(2013).

    [51] Kaminskii A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Reviews, 1, 93-177(2007).

    [52] Fan X, Li S, Huang X. Using polarization control plate to suppress transverse stimulated Raman scattering in large-aperture KDP crystal[J]. Laser and Particle Beams, 36, 1-4(2018).

    [53] Suydam B R. Self-focusing of very powerful laser beams Ⅱ[J]. IEEE  Journal of Quantum Electronics, 10, 837-843(1974).

    [54] Marburger J M. Self-focusing theory[J]. Prog Quantum Electron, 4, 35-110(1975).

    [55] Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett, 3, 307-310(1966).

    [56] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 23, 628-630(1974).

    [57] Vaseva I A, Fedoruk M P, Rubenchik A M. Light self-focusing in the atmosphere: thin window model[J]. Scientific Reports, 6, 30697(2016).

    [58] Wen Shuangchun, Fan Dianyuan. Filamentation instability of laser beams in nonlocal nonlinear media[J]. Chinese Physics, 10, 1032-1036(2001).

    [59] Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in the presence of vector effect[J]. Chinese Physics Letters, 17, 731-733(2000).

    [60] Williams W, Renard P A, Manes K R, et al. Modeling of selffocusing experiments by beam propagation codes[J]. UCRLLR105821961.

    [61] Coe S E, Afshar-Rad T, Willi O. Experimental observations of thermal whole beam self-focusing[J]. Europhysics Letters, 13, 251-256(1990).

    [62] Beckwitt K, Wise F W, Qian L. Compensation for self-focusing by use of cascade quadratic nonlinearity[J]. Optics Letters, 26, 1696-1698(2001).

    [63] Reintjes J, Carman R L, Shimizu F. Study of self-focusing and self-phase-modulation in the picosecond-time regime[J]. Physical Review A, 8, 1486-1503(1973).

    [64] Feng Zehu, Fu Xiquan, Zhang Lifu. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation[J]. Acta Physica Sinica, 57, 2253-2259(2008).

    [66] Jia H, Xu B, Wang F. Small-scale self-focusing in a tapered optical beam[J]. Applied Optics, 51, 6089-6094(2012).

    [69] Parham T G, Azevedo S, Chang J, et al. Large aperture optics perfmance[R]. LLNLTR410955, 2009.

    [70] Tanaka K A, Hashimoto H, Kodama R. Performance comparison of self-focusing with 1053- and 351-nm laser pulses[J]. Physical Review E, 60, 3283-3288(1999).

    [71] Jia H, Zhou L, Wang F. Dark spot downstream from nonlinear hot image[J]. Applied Optics, 51, 4285-4290(2012).

    [72] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 32, 5973-5982(1993).

    [73] Wang Y W, Wen S C, Zhang L F. Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss[J]. Appl Opt, 47, 1152-1163(2008).

    [74] Ye Z, Zhao J, Peng T. Evolution of the hot image effect in high-power laser system with cascaded Kerr medium[J]. Optics & Lasers in Engineering, 47, 1199-1204(2009).

    [75] Roth U, Loewenthal F, Tommasini R. Compensation of nonlinear self-focusing in high-power lasers[J]. IEEE Journal of Quantum Electronics, 36, 687-691(2000).

    [76] Hunt J T, Glaze J A, Simmons W W. Suppression of self-focusing through low-pass spatial filtering and relay imaging[J]. Applied Optics, 17, 2053-2057(1978).

    [77] Jokipii J R. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Applied Physics Letters, 23, 696-698(1973).

    [78] Williams W, Trenholme J, th C, et al. NIF design optimization[R]. UCRLLR105821964, 1996.

    [79] Murray J, Sacks R, Auerbach J, et al. Laser requirements perfmance[R]. UCRLLR105821973, 1996.

    [80] Spaeth M, Henesian M. Simulations of 3ω beam filamentation in the beamlet focus lens general comments on filamentation they[R]. LLNLTR661757.

    [82] Li D, Zhao J L, Peng T. Theoretical analysis of the image with a local intensity minimum during hot image formation in high-power laser systems[J]. Applied Optics, 48, 6229-6233(2009).

    [84] Lawson J K, Auerbach J M, English R E, et al. NIF optical specifications: the imptance of the RMS gradient[C]Proce of SPIE. 1999, 3492: 336344.

    [85] Campbell J H, HawleyFedder R A, Stolz C J, et al. NIF optical materials fabrication technologies: An overview[C]Proc of SPIE. 2004, 5341: 84102.

    [87] Ravizza F L, Nostr M C, Kegelmeyer L M, et al. Process f rapid detection of fratricidal defects on optics using linescan phase differential imaging[R]. LLNLPROC420837, 2009.

    [89] Adams J J, Arnold P A, Wegner P J. Description of the NIF Laser[J]. Fusion Science & Technology, 69, 25-145(2016).

    [92] Lindl J D, Amendt P, Berger R L. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [93] Lindl J, Landen O, Edwards J. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 21, 339-566(2014).

    [94] Moody J D, MacGowan B J, Rothenberg J E. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Physical Review Letters, 86, 2810-2813(2001).

    [95] Kato Y, Mima K, Miyanaga N. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057-1060(1984).

    [97] Lehmberg R H, Rothenberg J E. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks[J]. Journal of Applied Physics, 87, 1012-1022(2000).

    [98] Dixit S N, Lawson J K, Manes K R. Kinoform phase plates for focal plane irradiance profile control[J]. Optics Letters, 19, 417-419(1994).

    [99] Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Optics Letters, 20, 764-766(1995).

    [100] Yang C, Zhang R, Xu Q. Continuous phase plate for laser beam smoothing[J]. Applied Optics, 47, 1465-1469(2008).

    [101] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 21, 1703-1705(1996).

    [102] Li Ping, Jin Sai, Zhao Runchang. The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence[J]. High Power Laser Science and Engineering, 5, 49-54(2017).

    [105] Moody J D, Baldis H A, Montgomery D S. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas[J]. Physics of Plasmas, 2, 4285-4296(1995).

    [106] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 46, 27-31(1983).

    [107] Schmitt A J, Gardner J H. Illumination uniformity of laser-fusion pellets using induced spatial incoherence[J]. Journal of Applied Physics, 60, 6-13(1986).

    [108] Obenschain S P, Grun J, Herbst M J. Laser-target interaction with induced spatial incoherence[J]. Physical Review Letters, 56, 2807-2810(1986).

    [109] Skupsky S, Short R W, Kessler T. Improved laser-beam uniformity using the angular dispersion of frequency modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989).

    [110] Zhang R, Su J, Wang J. Experimental research on the influences of smoothing by spectral dispersion on the Technical Integration Line[J]. Applied Optics, 50, 687-695(2011).

    [111] Regan S P, Marozas J A, Craxton R S. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of the Optical Society of America B: Optical Physic, 22, 998-1002(2005).

    [112] Zhang Rui, Su Jingqin, Yuan Haoyu, et al. Research of beam conditioning technologies on SGⅢ laser facility[C]Proc of SPIE. 2014: 92930E.

    [113] Hohenberger M, Shvydky A, Marozas J A. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion[J]. Physics of Plasmas, 23, 092702(2016).

    [114] Joshua E R. Twodimensional beam smoothing by spectral dispersion f directdrive inertial confinement fusion[C]Proc of SPIE. 1995, 2633: 634644.

    [115] Miyaji G, Miyanaga N, Urushihara S. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Optics Letters, 27, 725-727(2002).

    [116] Zhang R, Zhang X, Sui Z. Research on beam smoothing characteristics using linearly modulated light[J]. Optics & Laser Technology, 40, 1018-1024(2008).

    [122] Hocquet S, Penninckx D, Gleyze J F. Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion[J]. Applied Optics, 49, 1104-1115(2010).

    [123] Short R W, Skupsky S. Frequency conversion of broad-bandwidth laser light[J]. IEEE Journal of Quantum Electronics, 26, 580-588(1990).

    [124] Tsubakimoto K, Nakatsuka M, Nakano H. Suppression of interference speckles produced by a random phase plate, using a polarization control plate[J]. Optics Communications, 91, 9-12(1992).

    [125] Boehly T R, Smalyuk V A, Meyerhofer D D. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser[J]. Journal of Applied Physics, 85, 3444-3447(1999).

    [126] Rothenberg J E. Polarization beam smoothing for inertial confinement fusion[J]. Journal of Applied Physics, 87, 3654-3662(2000).

    [127] Froula D H, Divol L, Berger R L. Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas[J]. Physical Review Letters, 101, 100-103(2008).

    [128] Collins T J B, Marozas J A, Anderson K S. A polar-drive-ignition design for the National Ignition Facility[J]. Physics of Plasmas, 19, 2841(2012).

    [130] Liu Z J, Zheng C Y, Cao L H. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 24, 032701(2017).

    Xiaofeng Wei, Ping Li. Beam coherence and control of laser fusion driver: Retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32(12): 121007
    Download Citation