• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 835 (2020)
Xu LU1、2, Jichong HOU1, Qiang ZHANG1、2、*, Jianfeng FAN1, Shaoping CHEN2, and Xiaomin WANG1、2、*
Author Affiliations
  • 11. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 22. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.15541/jim20200538 Cite this Article
    Xu LU, Jichong HOU, Qiang ZHANG, Jianfeng FAN, Shaoping CHEN, Xiaomin WANG. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2020, 36(8): 835 Copy Citation Text show less
    References

    [1] Thermoelectric cooling and power generation. Science, 285, 703-706(1999).

    [2] J SNYDER G, S TOBERER E. Complex thermoelectric materials. Nature Materials, 7, 105-114(2008).

    [3] X WANG, W LI, C WANG et al. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. Journal of Materials Chemistry A, 5, 24185-24192(2017).

    [4] J HE, T M TRITT. Advances in thermoelectric materials research: looking back and moving forward. Science, 357(2017).

    [5] I TANI J, H KIDO. Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B: Condensed Matter, 364, 218-224(2005).

    [6] S OHNO, K IMASATO, S ANAND et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2, 141-154(2018).

    [7] V PONNAMBALAM, T MORELLI D. On the thermoelectric properties of Zintl compounds Mg3Bi2-xPnx(Pn=P and Sb). Journal of Electronic Materials, 42, 1307-1312(2013).

    [8] L CONDRON C, M KAUZLARICH S, F GASCOIN et al. Thermoelectric properties and microstructure of Mg3Sb2. Journal of Solid State Chemistry, 179, 2252-2257(2006).

    [9] A BHARDWAJ, K SHUKLA A, R DHAKATE S et al. Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Advances, 5, 11058-11070(2015).

    [10] A BHARDWAJ, A RAJPUT, K SHUKLA A et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 3, 8504-8516(2013).

    [11] A BHARDWAJ, K MISRA D. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Advances, 4, 34552-34560(2014).

    [12] A BHARDWAJ, S CHAUHAN N, K MISRA D. Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering. Journal of Materials Chemistry A, 3, 10777-10786(2015).

    [13] A BHARDWAJ, S CHAUHAN N, S GOEL et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit. Physical Chemistry Chemical Physics, 18, 6191-6200(2016).

    [14] F AHMADPOUR, T KOLODIAZHNYI, Y MOZHARIVSKYJ. Structural and physical properties of Mg3-xZnxSb2 (x=0-1.34). Journal of Solid State Chemistry, 180, 2420-2428(2007).

    [15] L SONG, J ZHANG, B IVERSEN B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. Journal of Materials Chemistry A, 5, 4932-4939(2017).

    [16] J SHUAI, M WANG Y, S KIM H et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Materialia, 93, 187-193(2015).

    [17] H TAMAKI, K SATO H, T KANNO. Isotropic conduction network and defect chemistry in Mg3+dSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater., 28, 10182-10187(2016).

    [18] P GORAI, R ORTIZ B, S TOBERER E et al. Investigation of n-type doping strategies for Mg3Sb2. Journal of Materials Chemistry A, 6, 13806-13815(2018).

    [19] J MAO, Y WU, S SONG et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Letters, 2, 2245-2250(2017).

    [20] K MISRA D, A RAJPUT, A BHARDWAJ et al. Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Applied Physics Letters, 106, 103901(2015).

    [21] L MI J, B ZHAO X, J ZHU T et al. Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. Journal of Physics D-Applied Physics, 41, 205403(2008).

    [22] B PENG, H ZHANG, H SHAO et al. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. Journal of Materials Chemistry A, 6, 2018-2033(2018).

    [23] L SUN, Y WU C, C HAN J et al. Band structure and thermoelectric performances of antimony under trigonal transformation. Journal of Applied Physics, 125, 145102(2019).

    [24] Q ZHANG, L CHENG, W LIU et al. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. Phys. Chem. Chem. Phys., 16, 23576-23583(2014).

    [25] U GORDON I, P WAGNER, U DAS A et al. Comparative Hall studies in the electron- and hole-doped manganites La0.33Ca0.67MnO3 and La0.70Ca0.30MnO3. Phys. Rev. B, 62, 11633-11638(2000).

    [26] J ZHANG, L SONG, A MAMAKHEL et al. High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chemistry of Materials, 29, 5371-5383(2017).

    [27] C CHEN, F LI X, S LI et al. Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. Journal of Materials Science, 53, 16001-16009(2018).

    [28] M TRITT T. Thermal conductivity: theory, properties and applications. New York: Springer Science & Business Media, 12-20(2004).

    Xu LU, Jichong HOU, Qiang ZHANG, Jianfeng FAN, Shaoping CHEN, Xiaomin WANG. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2020, 36(8): 835
    Download Citation