• Infrared and Laser Engineering
  • Vol. 49, Issue 2, 203009 (2020)
Cui Xiaoyu*, Tao Yuting, Liu Qun, Xu Peituo, Liu Zhipeng, Wang Xiaobin, Zhou Yudi, Chen Yang, and Liu Dong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla202049.0203009 Cite this Article
    Cui Xiaoyu, Tao Yuting, Liu Qun, Xu Peituo, Liu Zhipeng, Wang Xiaobin, Zhou Yudi, Chen Yang, Liu Dong. Software to simulate spaceborne oceanic lidar returns using semianalytic Monte Carlo technique[J]. Infrared and Laser Engineering, 2020, 49(2): 203009 Copy Citation Text show less
    References

    [1] Behrenfeld M J. Biospheric primary production during an ENSO transition[J]. Science, 2001, 291(5513): 2594-2597.

    [2] Dickey T, Lewis M, Chang G. Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations[J]. Reviews of Geophysics, 2006, 44(1): RG1001.

    [3] Lee J H. Oceanographic lidar profiles compared with estimates from in situ optical measurements[J]. Applied Optics, 2013, 52(4): 786-794.

    [4] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2014, 53(5): 051405.

    [5] Mcclain C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 2009, 1(1): 19.

    [6] Liu Q. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278-30291.

    [7] Hostetler C. Airborne lidar for ocean-atmosphere studies and assessment of future satellite mission concepts[C]//AGU Fall Meeting Abstracts, 2014.

    [8] Hoge F E. Airborne lidar detection of subsurface oceanic scattering layers[J]. Applied Optics, 1988, 27(19): 3969-3977.

    [9] Hostetler C A. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 2018, 10(1): 121-147.

    [10] Behrenfeld M J. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360.

    [11] Lu X. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements[J]. Optics Express, 2016, 24(25):29001.

    [12] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.

    [13] Poole L R, Venable D D, Campbell J W. Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems[J]. Applied Optics, 1981, 20(20): 3653-3656.

    [14] Mobley C D, Sundman L K, Boss E. Phase function effects on oceanic light fields[J]. Applied Optics, 2002, 41(6): 1035-1050.

    [15] Petzold T J. Volume scattering functions for selected ocean waters[J]. Scripps Institution of Oceanography, 1972, 10: 307.

    [16] Mobley C D. Comparison of numerical models for computing underwater light fields[J]. Applied Optics, 1993, 32(36): 7484-7504.

    [17] Henyey L G, Greenstein J L. Diffuse radiation in the galaxy[J]. The Astrophysical Journal, 1941, 93: 70-83.

    [18] Fournier G R, Forand J L. Analytic phase function for ocean water[C]//Proceedings of SPIE-the International Society for Optical Engineering, 1994, 2258: 194-201.

    [19] Gordon H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996-3001.

    [20] Lee Z P. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods[J]. Journal of Geophysical Research Oceans, 2005, 110(C2): DOI: 10.1029/2004JC002873.

    Cui Xiaoyu, Tao Yuting, Liu Qun, Xu Peituo, Liu Zhipeng, Wang Xiaobin, Zhou Yudi, Chen Yang, Liu Dong. Software to simulate spaceborne oceanic lidar returns using semianalytic Monte Carlo technique[J]. Infrared and Laser Engineering, 2020, 49(2): 203009
    Download Citation