• Chinese Journal of Lasers
  • Vol. 51, Issue 4, 0402406 (2024)
Zezheng Li1, Shuaipeng Guo1, Chuang Jiang2, Shaolin Ke2, and Zhennan Tian1、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin , China
  • 2Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, Hubei , China
  • show less
    DOI: 10.3788/CJL231285 Cite this Article Set citation alerts
    Zezheng Li, Shuaipeng Guo, Chuang Jiang, Shaolin Ke, Zhennan Tian. Three-Dimensional Femtosecond-Laser Direct-Written Optical Waveguide: Advancements and Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402406 Copy Citation Text show less
    References

    [1] Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission[J]. Optical Fiber Technology, 35, 108-117(2017).

    [2] Bao J M, Fu Z R, Pramanik T et al. Very-large-scale integrated quantum graph photonics[J]. Nature Photonics, 17, 573-581(2023).

    [3] Liu J Q, Huang G H, Wang R N et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[C](2021).

    [4] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).

    [5] Wang J, Cai C K, Cui F et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects[J]. Advanced Photonics, 5, 036004(2023).

    [6] Zhang X L, Yu F, Chen Z G et al. Non-Abelian braiding on photonic chips[J]. Nature Photonics, 16, 390-395(2022).

    [7] Rechtsman M C, Zeuner J M, Plotnik Y et al. Photonic floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [8] Harris R J, MacLachlan D G, Choudhury D et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy[J]. Monthly Notices of the Royal Astronomical Society, 450, 428-434(2015).

    [9] Waltermann C, Doering A, Köhring M et al. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing[J]. Optics Letters, 40, 3109-3112(2015).

    [10] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [11] Eaton S M, Ng M L, Osellame R et al. High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser[J]. Journal of Non-Crystalline Solids, 357, 2387-2391(2011).

    [12] Eaton S M, Chen W J, Zhang H B et al. Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths[J]. Journal of Lightwave Technology, 27, 1079-1085(2009).

    [13] Zhu S N. Non-Abelian 3D photonic chips fabricated by femtosecond-laser direct-writing[J]. Chinese Science Bulletin, 67, 4041-4043(2022).

    [14] Li L Q, Nie W J, Li Z Q et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications[J]. Scientific Reports, 7, 7034(2017).

    [15] Bérubé J P, Vallée R. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass[J]. Optics Letters, 41, 3074-3077(2016).

    [16] Marshall G D, Politi A, Matthews J C F et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 17, 12546-12554(2009).

    [17] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics-JETP, 20, 1307-1314(1965).

    [18] Lenzner M, Krüger J, Sartania S et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 80, 4076-4079(1998).

    [19] Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 12, 1784-1794(2001).

    [20] Gross S, Dubov M, Withford M J. On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics[J]. Optics Express, 23, 7767-7770(2015).

    [21] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).

    [22] Juodkazis S, Nishimura K, Tanaka S et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).

    [23] Watanabe W, Sowa S, Tamaki T et al. Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser[J]. Japanese Journal of Applied Physics, 45, L765(2006).

    [24] Miura K, Qiu J R, Inouye H et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 71, 3329-3331(1997).

    [25] Chen G Y, Piantedosi F, Otten D et al. Femtosecond-laser-written microstructured waveguides in BK7 glass[J]. Scientific Reports, 8, 10377(2018).

    [26] Ferrer A, de la Cruz A R, Puerto D et al. In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics[J]. Journal of the Optical Society of America B, 27, 1688-1692(2010).

    [27] Osellame R, Maselli V, Chiodo N et al. Fabrication of 3D photonic devices at 1.55 µm wavelength by femtosecond Ti∶sapphire oscillator[J]. Electronics Letters, 41, 315-317(2005).

    [28] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 26, 42-43(2001).

    [29] Eaton S M, Zhang H B, Herman P R et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 13, 4708-4716(2005).

    [30] Zhang Y Y, Wu J M, Wang L et al. Femtosecond laser direct writing of Nd∶YAG waveguide with Type I modification: positive refractive index change in track[J]. Optical Materials, 113, 110844(2021).

    [31] He R Y, Hernández-Palmero I, Romero C et al. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing[J]. Optics Express, 22, 31293-31298(2014).

    [32] Wu B, Zhang B, Liu W J et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal[J]. Optics & Laser Technology, 145, 107500(2022).

    [33] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).

    [34] Zhang B, Xiong B C, Li Z Q et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses[J]. Optical Materials, 86, 571-575(2018).

    [35] Feng T, Sahoo P K, Arteaga-Sierra F R et al. Pulse-propagation modeling and experiment for femtosecond-laser writing of waveguide in Nd∶YAG[J]. Crystals, 9, 434(2019).

    [36] Liu H L, Jia Y C, Chen F et al. Continuous wave laser operation in Nd∶GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses[J]. Optical Materials Express, 3, 278-283(2013).

    [37] He R Y, An Q, de Aldana J R V et al. Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals[J]. Applied Optics, 52, 3713-3718(2013).

    [38] Salamu G, Pavel N. Power scaling from buried depressed-cladding waveguides realized in Nd∶YVO4 by femtosecond-laser beam writing[J]. Optics & Laser Technology, 84, 149-154(2016).

    [39] Zhang Q, Li M, Xu J et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Research, 7, 503-507(2019).

    [40] Bérubé J P, Lapointe J, Dupont A et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 44, 37-40(2018).

    [41] Nie W J, Cheng C, Jia Y C et al. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd∶YAP crystal by direct femtosecond laser writing[J]. Optics Letters, 40, 2437-2440(2015).

    [42] Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [43] Campbell S, Thomson R R, Hand D P et al. Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides[J]. Optics Express, 15, 17146-17150(2007).

    [44] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing[J]. Optics Express, 19, 17820-17833(2011).

    [45] Zhang C, Dong N N, Yang J et al. Channel waveguide lasers in Nd∶GGG crystals fabricated by femtosecond laser inscription[J]. Optics Express, 19, 12503-12508(2011).

    [46] Qi J, Wang P, Liao Y et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses[J]. Optical Materials Express, 6, 2554-2559(2016).

    [47] Grivas C, Ismaeel R, Corbari C et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti∶sapphire waveguides[J]. Laser & Photonics Reviews, 12, 1800167(2018).

    [48] Dong N N, Chen F, de Aldana J R V. Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 6, 306-308(2012).

    [49] Romero C, García Ajates J, Chen F et al. Fabrication of tapered circular depressed-cladding waveguides in Nd∶YAG crystal by femtosecond-laser direct inscription[J]. Micromachines, 11, 10(2019).

    [50] Degl'Innocenti R, Reidt S, Guarino A et al. Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation[J]. Journal of Applied Physics, 100, 113121(2006).

    [51] Jia Y C, Dong N N, Chen F et al. Ridge waveguide lasers in Nd∶GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation[J]. Optics Express, 20, 9763-9768(2012).

    [52] Jia Y C, Rüter C E, Akhmadaliev S et al. Ridge waveguide lasers in Nd∶YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing[J]. Optical Materials Express, 3, 433-438(2013).

    [53] Jia Y C, Chen F, de Aldana J R V et al. Femtosecond laser micromachining of Nd∶GdCOB ridge waveguides for second harmonic generation[J]. Optical Materials, 34, 1913-1916(2012).

    [54] Chen F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 106, 081101(2009).

    [55] Bi Z F, Wang L, Liu X H et al. Optical waveguides in TiO2 formed by He ion implantation[J]. Optics Express, 20, 6712-6719(2012).

    [56] van Uden R G H, Correa R A, Lopez E A et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre[J]. Nature Photonics, 8, 865-870(2014).

    [57] Trichili A, Park K H, Zghal M et al. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives[J]. IEEE Communications Surveys & Tutorials, 21, 3175-3203(2019).

    [58] Klaus W, Sakaguchi J, Puttnam B J et al. Free-space coupling optics for multicore fibers[J]. IEEE Photonics Technology Letters, 24, 1902-1905(2012).

    [59] Zhu B, Taunay T F, Yan M F et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 18, 11117-11122(2010).

    [60] Flockhart G M H, MacPherson W N, Barton J S et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber[J]. Optics Letters, 28, 387-389(2003).

    [61] Ding Y H, Ye F H, Peucheret C et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk[J]. Optics Express, 23, 3292-3298(2015).

    [62] Watanabe T, Hikita M, Kokubun Y. Laminated polymer waveguide fan-out device for uncoupled multi-core fibers[J]. Optics Express, 20, 26317-26325(2012).

    [63] Thomson R R, Bookey H T, Psaila N D et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications[J]. Optics Express, 15, 11691-11697(2007).

    [64] Thomson R R, Harris R J, Birks T A et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics[J]. Optics Letters, 37, 2331-2333(2012).

    [65] Lebugle M, Gräfe M, Heilmann R et al. Experimental observation of N00N state Bloch oscillations[J]. Nature Communications, 6, 8273(2015).

    [66] Liang Y Z, Cai C K, Wang K R et al. Low-insertion-loss femtosecond laser-inscribed three-dimensional high-density mux/demux devices[J]. Advanced Photonics Nexus, 2, 036002(2023).

    [67] Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G et al. Six mode selective fiber optic spatial multiplexer[J]. Optics Letters, 40, 1663-1666(2015).

    [68] Park K J, Song K Y, Kim Y K et al. Broadband mode division multiplexer using all-fiber mode selective couplers[J]. Optics Express, 24, 3543-3549(2016).

    [69] Han X, Jiang Y H, Frigg A et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform[J]. Laser & Photonics Reviews, 16, 2100529(2022).

    [70] Randel S, Ryf R, Sierra A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 19, 16697-16707(2011).

    [71] Wang H W, Zhang Y, He Y et al. Compact silicon waveguide mode converter employing dielectric metasurface structure[J]. Advanced Optical Materials, 7, 1801191(2019).

    [72] Chang Z S, Chiang K S. Ultra-broadband mode filters based on graphene-embedded waveguides[J]. Optics Letters, 42, 3868-3871(2017).

    [73] Zhang M R, Chen K X, Jin W et al. Electro-optic mode-selective switch based on cascaded three-dimensional lithium-niobate waveguide directional couplers[J]. Optics Express, 28, 35506-35517(2020).

    [74] Riesen N, Gross S, Love J D et al. Femtosecond direct-written integrated mode couplers[J]. Optics Express, 22, 29855-29861(2014).

    [75] Chen Y, Xia K Y, Shen W G et al. Vector vortex beam emitter embedded in a photonic chip[J]. Physical Review Letters, 124, 153601(2020).

    [76] Gross S, Riesen N, Love J D et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers[J]. Laser & Photonics Reviews, 8, L81-L85(2014).

    [77] Riesen N, Gross S, Love J D et al. Monolithic mode-selective few-mode multicore fiber multiplexers[J]. Scientific Reports, 7, 6971(2017).

    [78] Gross S, Ross-Adams A, Riesen N et al. Ultrafast laser-written sub-components for space division multiplexing[C], W1A.1(2020).

    [79] Guan B B, Ercan B, Fontaine N K et al. Mode-group-selective photonic lantern based on integrated 3D devices fabricated by ultrafast laser inscription[C], W2A.16(2015).

    [80] Li Z Z, Ouyang Y, Li Z T et al. Three-dimensional on-chip mode converter[J]. Optics Letters, 48, 1140-1143(2023).

    [81] Nolte S, Will M, Burghoff J et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 77, 109-111(2003).

    [82] Pospiech M, Emons M, Väckenstedt B et al. Single-sweep laser writing of 3D-waveguide devices[J]. Optics Express, 18, 6994-7001(2010).

    [83] Sakakura M, Sawano T, Shimotsuma Y et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 18, 12136-12143(2010).

    [84] Yuan W H, Lü J M, Hao X T et al. Optimization of waveguide structures for beam splitters fabricated in fused silica by direct femtosecond-laser inscription[J]. Optics & Laser Technology, 74, 60-64(2015).

    [85] Mittholiya K, Anshad P K, Mallik A K et al. Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses[J]. Journal of Optics, 46, 304-310(2017).

    [86] Lü J M, Cheng Y Z, Yuan W H et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal[J]. Optical Materials Express, 5, 1274-1280(2015).

    [87] Ajates J G, de Aldana J R V, Chen F et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides[J]. Optical Materials Express, 8, 1890-1901(2018).

    [88] Lü J M, Cheng Y Z, de Aldana J R V et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal[J]. Journal of Lightwave Technology, 34, 3587-3591(2016).

    [89] Nie W J, Jia Y C, de Aldana J R V et al. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription[J]. Scientific Reports, 6, 22310(2016).

    [90] Qiang X G, Zhou X Q, Wang J W et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J]. Nature Photonics, 12, 534-539(2018).

    [91] Feng L T, Zhang M, Xiong X et al. Transverse mode-encoded quantum gate on a silicon photonic chip[J]. Physical Review Letters, 128, 060501(2022).

    [92] Zhang Q, Li M, Chen Y et al. Femtosecond laser direct writing of an integrated path-encoded CNOT quantum gate[J]. Optical Materials Express, 9, 2318-2326(2019).

    [93] Crespi A, Ramponi R, Osellame R et al. Integrated photonic quantum gates for polarization qubits[J]. Nature Communications, 2, 566(2011).

    [94] Meany T, Biggerstaff D N, Broome M A et al. Engineering integrated photonics for heralded quantum gates[J]. Scientific Reports, 6, 25126(2016).

    [95] Spagnolo N, Vitelli C, Aparo L et al. Three-photon bosonic coalescence in an integrated tritter[J]. Nature Communications, 4, 1606(2013).

    [96] Li M, Li C, Chen Y et al. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 10, 1533-1542(2022).

    [97] Poulios K, Keil R, Fry D et al. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays[J]. Physical Review Letters, 112, 143604(2014).

    [98] Tang H, Lin X F, Feng Z et al. Experimental two-dimensional quantum walk on a photonic chip[J]. Science Advances, 4, eaat3174(2018).

    [99] Max E, Robert K, Maczewsky L J et al. Exploring complex graphs using three-dimensional quantum walks of correlated photons[J]. Science Advances, 7, eabc5266(2021).

    [100] Crespi A, Osellame R, Ramponi R et al. Suppression law of quantum states in a 3D photonic fast Fourier transform chip[J]. Nature Communications, 7, 10469(2016).

    [101] Tang H, di Franco C, Shi Z Y et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 12, 754-758(2018).

    [102] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [103] Wang H F, Xie B Y, Zhan P et al. Research progress of topological photonics[J]. Acta Physica Sinica, 68, 224206(2019).

    [104] Zeuner J M, Rechtsman M C, Plotnik Y et al. Observation of a topological transition in the bulk of a non-Hermitian system[J]. Physical Review Letters, 115, 040402(2015).

    [105] Maczewsky L J, Heinrich M, Kremer M et al. Nonlinearity-induced photonic topological insulator[J]. Science, 370, 701-704(2020).

    [106] Bland-Hawthorn J, Kern P. Astrophotonics: a new era for astronomical instruments[J]. Optics Express, 17, 1880-1884(2009).

    [107] Thomson R R, Birks T A, Leon-Saval S G et al. Ultrafast laser inscription of an integrated photonic lantern[J]. Optics express, 19, 5698-5705(2011).

    [108] Jovanovic N, Spaleniak I, Gross S et al. Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide[J]. Optics Express, 20, 17029-17043(2012).

    [109] Spaleniak I, Jovanovic N, Gross S et al. Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition[J]. Optics Express, 21, 27197-27208(2013).

    [110] Spaleniak I, Gross S, Jovanovic N et al. Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings[J]. Laser & Photonics Reviews, 8, L1-L5(2014).

    [111] Diener R, Tepper J, Labadie L et al. Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry[J]. Optics Express, 25, 19262-19274(2017).

    [112] Martinod M A, Norris B, Tuthill P et al. Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument[J]. Nature Communications, 12, 2465(2021).

    [113] Tai H, Yoshino T, Tanaka H. Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He-Ne laser[J]. Optics Letters, 12, 437-439(1987).

    [114] Heo J, Rodrigues M, Saggese S J et al. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers[J]. Applied Optics, 30, 3944-3951(1991).

    [115] Bilro L, Alberto N, Pinto J L et al. A simple and low-cost cure monitoring system based on a side-polished plastic optical fibre[J]. Measurement Science and Technology, 21, 117001(2010).

    [116] Ribeiro R M, Canedo J L P, Werneck M M et al. An evanescent-coupling plastic optical fibre refractometer and absorptionmeter based on surface light scattering[J]. Sensors and Actuators A: Physical, 101, 69-76(2002).

    [117] Crespi A, Gu Y, Ngamsom B et al. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection[J]. Lab on a Chip, 10, 1167-1173(2010).

    [118] Khalil A A, Lalanne P, Bérubé J P et al. Femtosecond laser writing of near-surface waveguides for refractive-index sensing[J]. Optics Express, 27, 31130-31143(2019).

    [119] Zhang Y F, Lin C P, Liao C R et al. Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurement[J]. Optics Letters, 43, 4421-4424(2018).

    [120] Li W W, Chen W P, Wang D N et al. Fiber inline Mach-Zehnder interferometer based on femtosecond laser inscribed waveguides[J]. Optics Letters, 42, 4438-4441(2017).

    [121] Zhao Y, Zhao J, Wang X X et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J]. Sensors and Actuators B: Chemical, 353, 131134(2022).

    [122] He J, He J, Xu X Z et al. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing[J]. Photonics Research, 9, 2052-2059(2021).

    [123] Tan D Z, Sun X Y, Li Z L et al. Effectively writing low propagation and bend loss waveguides in the silica glass by using a femtosecond laser[J]. Optics Letters, 47, 4766-4769(2022).

    [124] Eaton S M, Ng M L, Bonse J et al. Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser[J]. Applied Optics, 47, 2098-2102(2008).

    [125] Tan D Z, Sun X Y, Wang Q et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing[J]. Optics Letters, 45, 3941-3944(2020).

    [126] Khalid M, Chen G Y, Ebendorff-Heidepreim H et al. Femtosecond laser induced low propagation loss waveguides in a lead-germanate glass for efficient lasing in near to mid-IR[J]. Scientific Reports, 11, 10742(2021).

    [127] Yang W J, Corbari C, Kazansky P G et al. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing[J]. Optics Express, 16, 16215-16226(2008).

    [128] Lapointe J, Ledemi Y, Loranger S et al. Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape[J]. Optics Letters, 41, 203-206(2016).

    [129] Li Z Q, Cheng C, Romero C et al. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing[J]. Optical Materials, 73, 45-49(2017).

    [130] Jia Y C, He R Y, de Aldana J R V et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers[J]. Optics Express, 27, 30941-30951(2019).

    [131] Ince F D, Morova Y, Yazlar U et al. Femtosecond laser writing of low-loss waveguides with different geometries in diamond[J]. Diamond and Related Materials, 135, 109894(2023).

    [132] Piromjitpong T, Dubov M, Boscolo S. High-repetition-rate femtosecond-laser inscription of low-loss thermally stable waveguides in lithium niobate[J]. Applied Physics A, 125, 302(2019).

    [133] Ren Y Y, Cui Z M, Sun L F et al. Laser emission from low-loss cladding waveguides in Pr∶YLF by femtosecond laser helical inscription[J]. Chinese Optics Letters, 20, 122201(2022).

    [134] Okhrimchuk A, Mezentsev V, Shestakov A et al. Low loss depressed cladding waveguide inscribed in YAG∶Nd single crystal by femtosecond laser pulses[J]. Optics Express, 20, 3832-3843(2012).

    [135] Pätzold W M, Reinhardt C, Demircan A et al. Cascaded-focus laser writing of low-loss waveguides in polymers[J]. Optics Letters, 41, 1269-1272(2016).

    [136] Li Z Z, Tian Z N, Li Z T et al. Photon propagation control on laser-written photonic chips enabled by composite waveguides[J]. Photonics Research, 11, 829-838(2023).

    [137] Zheltikov A M, Reid D T. Weak-guidance-theory review of dispersion and birefringence management by laser inscription[J]. Laser Physics Letters, 5, 11-20(2008).

    [138] Hnatovsky C, Taylor R S, Simova E et al. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations[J]. Journal of Applied Physics, 98, 013517(2005).

    [139] Gross S, Ams M, Palmer G et al. Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics[J]. International Journal of Applied Glass Science, 3, 332-348(2012).

    [140] Qiu J R. Femtosecond laser-induced microstructures in glasses and applications in micro-optics[J]. The Chemical Record, 4, 50-58(2004).

    [141] Psaila N D, Thomson R R, Bookey H T et al. Femtosecond laser inscription of optical waveguides in bismuth ion doped glass[J]. Optics Express, 14, 10452-10459(2006).

    [142] Liu J R, Zhang Z Y, Flueraru C et al. Waveguide shaping and writing in fused silica using a femtosecond laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 169-173(2004).

    [143] Osellame R, Taccheo S, Marangoni M et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 20, 1559-1567(2003).

    [144] Cheng Y, Sugioka K, Midorikawa K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 28, 55-57(2003).

    [145] Ferrer A, Diez-Blanco V, Ruiz A et al. Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass[J]. Applied Surface Science, 254, 1121-1125(2007).

    [146] Yu F, Wang L C, Chen Y et al. Polarization independent quantum devices with ultra-low birefringence glass waveguides[J]. Journal of Lightwave Technology, 39, 1451-1457(2021).

    [147] de la Cruz A R, Ferrer A, Gawelda W et al. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing[J]. Optics Express, 17, 20853-20859(2009).

    [148] Salter P S, Baum M, Alexeev I et al. Exploring the depth range for three-dimensional laser machining with aberration correction[J]. Optics Express, 22, 17644-17656(2014).

    [149] Simmonds R D, Salter P S, Jesacher A et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system[J]. Optics Express, 19, 24122-24128(2011).

    [150] Li Z Z, Li X Y, Yu F et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses[J]. Optics Letters, 46, 520-523(2021).

    [151] Sun B S, Morozko F, Salter P S et al. On-chip beam rotators, adiabatic mode converters, and waveplates through low-loss waveguides with variable cross-sections[J]. Light: Science & Applications, 11, 214(2022).

    [152] Huang L, Salter P S, Payne F et al. Aberration correction for direct laser written waveguides in a transverse geometry[J]. Optics Express, 24, 10565-10574(2016).

    [153] Feng Z, Wu B H, Zhao Y X et al. Invisibility cloak printed on a photonic chip[J]. Scientific Reports, 6, 28527(2016).

    [154] Li G Y, Winick K A, Said A A et al. Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling[J]. Optics Letters, 31, 739-741(2006).

    [155] Humphreys P C, Metcalf B J, Spring J B et al. Strain-optic active control for quantum integrated photonics[J]. Optics Express, 22, 21719-21726(2014).

    [156] Flamini F, Magrini L, Rab A S et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining[J]. Light: Science & Applications, 4, e354(2015).

    [157] Chaboyer Z, Meany T, Helt L G et al. Tunable quantum interference in a 3D integrated circuit[J]. Scientific Reports, 5, 9601(2015).

    [158] Ceccarelli F, Atzeni S, Pentangelo C et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining[J]. Laser & Photonics Reviews, 14, 2000024(2020).

    Zezheng Li, Shuaipeng Guo, Chuang Jiang, Shaolin Ke, Zhennan Tian. Three-Dimensional Femtosecond-Laser Direct-Written Optical Waveguide: Advancements and Challenges (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402406
    Download Citation