• Photonic Sensors
  • Vol. 8, Issue 4, 358 (2018)
Zongliang WANG1、*, Jun CHANG2, Qi LIU1, Cunwei TIAN1, and Qinduan ZHANG2
Author Affiliations
  • 1School of Physics Science and Information Technology and Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China
  • 2School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.1007/s13320-018-0502-0 Cite this Article
    Zongliang WANG, Jun CHANG, Qi LIU, Cunwei TIAN, Qinduan ZHANG. Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement[J]. Photonic Sensors, 2018, 8(4): 358 Copy Citation Text show less
    References

    [1] S. Rasi, A. Veijanen, and J. Rintala, “Trace compounds of biogas from different biogas production plants,” Energy, 2007, 32(8): 1375–1380.

    [2] X. Chen, J. Chang, F. P. Wang, Z. L. Wang, W. Wei, Y. Y. Liu, et al., “A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection,” Photonic Sensors, 2017, 7(1): 27–36.

    [3] X. G. Niu, X. Huang, Z. Zhao, Y. H. Zhang, C. C. Huang, and L. Cui, “The design and evaluation of a wireless sensor network for mine safety monitoring,” in Proceeding of IEEE Global Telecommunications Conference, Washington, DC, USA, 2007, pp. 1291–1295.

    [4] J. P. Sun, “Mine safety monitoring and control technology and system,” Coal Science and Technology, 2010, 38(10): 1–4.

    [5] M. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Measurement Science and Technology, 1998, 9(4): 545–562.

    [6] Y. Liu, E. Koep, and M. L. Liu, “A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition,” Chemistry of Materials, 2005, 17(15): 3997–4000.

    [7] A. R. Brandt, G. A. Heath, E. A. Kort, F. O'Sullivan, G. Pétron, S. M. Jordaan, et al., “Methane leaks from North American natural gas systems,” Science, 2014, 343(6172): 733–735.

    [8] J. Wojtas, A. Gluszek, A. Hudzikowski, and F. K. Tittel, “Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy,” Sensors, 2017, 17(3): 513-1–513-9.

    [9] Y. F. Ma, Y. He, C. Chen, X. Yu, J. B. Zhang, J. B. Peng, et al., “Planar laser-based QEPAS trace gas sensor,” Sensors, 2016, 16(7): 989-1–989-7.

    [10] Q. D. Zhang, J. Chang, Q. Wang, Z. L. Wang, F. P. Wang, and Z. G. Qin, “Acousto-optic Q-switched fiber laser-based intra-cavity photoacoustic spectroscopy for trace gas detection,” Sensors, 2018, 18(1): 42-1–42-8.

    [11] Z. Wang, J. Geng, and W. Ren, “Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis,” Applied Spectroscopy, 2017, 71(8): 1834–1841.

    [12] T. N. Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Review of Scientific Instruments, 2015, 86(2): 023111-1–023111-5.

    [13] H. Wu, L. Dong, H. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, et al., “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nature Communications, 2017, 8: 15331-1–15331-8.

    [14] J. Y. Sim, C. G. Ahn, C. Huh, K. H. Chung, E. J. Jeong, and B. K. Kim, “Synergetic resonance matching of a microphone and a photoacoustic cell,” Sensors, 2017, 17(4): 804-1–804-10.

    [15] A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, et al., “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors, 2016, 16(4): 439-1–439-8.

    [16] H. D. Zheng, L. Dong, A. Sampaolo, H. P Wu, P. Patimisco, X. K. Yin, et al., “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy,” Optics Letters, 2016, 41(5): 978–981.

    [17] T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5 μm InGaAsP distributed feedback laser to NH3 absorption lines,” Applied Physics Letters, 1984, 45(8): 826–828.

    [18] P. Gong, L. Xie, X. Q. Qi, and R. Wang, “A QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technology Letters, 2015, 27(5): 545–548.

    [19] G. S. Wang, H. M. Yi, T. D. Cai, L. Wang, T. Tan, W. J. Zhang, et al., “Research on the real-time measurement system based on QEPAS,” Acta Physica Sinica, 2012, 61(12): 120701-1–120701-8.

    [20] Q. Wang, Z. Wang, and W. Ren, “Wavelengthstabilization-based photoacoustic spectroscopy for methane detection,” Measurement Science and Technology, 2017, 28(6): 065102-1–065102-8.

    Zongliang WANG, Jun CHANG, Qi LIU, Cunwei TIAN, Qinduan ZHANG. Gas Absorption Center-Based Wavelength Calibration Technique in QEPAS System for SNR Improvement[J]. Photonic Sensors, 2018, 8(4): 358
    Download Citation