• Acta Optica Sinica
  • Vol. 38, Issue 7, 0714002 (2018)
Xueyan Li, Yanyi Jiang*, Yuan Yao, Zhiyi Bi, and Longsheng Ma
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.3788/AOS201838.0714002 Cite this Article Set citation alerts
    Xueyan Li, Yanyi Jiang, Yuan Yao, Zhiyi Bi, Longsheng Ma. Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J]. Acta Optica Sinica, 2018, 38(7): 0714002 Copy Citation Text show less
    References

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016). http://www.ncbi.nlm.nih.gov/pubmed/26918975

    [3] Schiller S, Tino G M, Gill P et al. Einstein Gravity Explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 23, 573-610(2009). http://link.springer.com/article/10.1007/s10686-008-9126-5

    [4] Drever R W P, Hall J L, Kowalski F V et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983). http://link.springer.com/article/10.1007/BF00702605

    [5] Young B C, Cruz F C, Itano W M et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 82, 3799-3802(1999). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.3799

    [6] Chen J B. Active optical clock[J]. Chinese Science Bulletin, 54, 348-352(2009).

    [7] Norcia M A, Winchester M N. Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2, e1601231(2016).

    [8] Thorpe M J, Rippe L, Fortier T M et al. Frequency stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 5, 688-693(2011). http://www.oalib.com/paper/3317605

    [9] Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu 3+∶Y2SiO5[J]. Physical Review Letters, 114, 253902(2015).

    [10] Häfner S, Falke S, Grebing C et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 40, 2112-2115(2015). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25927798

    [11] Nicholson T L, Martin M J, Williams J R et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 109, 230801(2012). http://europepmc.org/abstract/MED/23368177

    [12] Jiang Y Y, Ludlow A D, Lemke N D et al. Making optical atomic clocks more stable with 10 -16 -level laser stabilization [J]. Nature Photonics, 5, 158-161(2011).

    [13] Chen H Q, Jiang Y Y, Fang S et al. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. Journal of the Optical Society of America B, 30, 1546-1550(2013). http://www.opticsinfobase.org/abstract.cfm?uri=josab-30-6-1546

    [14] Millo J, Magalhaes D V, Mandache C et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 79, 053829(2009). http://www.oalib.com/paper/3350197

    [15] Webster S A, Oxborrow M, Pugla S et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 77, 033847(2008). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2008PhRvA..77c3847W

    [16] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 93, 250602(2004). http://europepmc.org/abstract/MED/15697887

    [17] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub 10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017). http://arxiv.org/abs/1702.04669

    [18] Zhang W, Robinson J M, Sonderhouse L et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K[J]. Physical Review Letters, 119, 243601(2017). http://www.ncbi.nlm.nih.gov/pubmed/29286721

    [19] Mueller G[R]. McNamara P, Thorpe I, et al. Laser frequency stabilization for LISA: NASA/TM-2005-212794(2005).

    [20] Wang X C, Li S K, Li G et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse[J]. Acta Optica Sinica, 37, 0112004(2017).

    [21] Sun X T, Liu J Q, Zhou J et al. Confocal Fabry-Pérot interferometer for frequency stabilization of laser[J]. Chinses Jounal of Lasers, 35, 1005-1008(2008).

    [22] Dai X J, Jiang Y Y, Hang C et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 23, 5134-5146(2015).

    [23] Sanjuan J, Gürlebeck N, Braxmaier C. Mathematical model of thermal shields for long-term stability optical resonators[J]. Optics Express, 23, 17892-17908(2015). http://www.ncbi.nlm.nih.gov/pubmed/26191850

    [24] Hagemann C, Grebing C, Lisdat C. et al. Ultrastable laser with average fractional frequency drift rate below 5×10 -19/s [J]. Optics Letters, 39, 5102-5105(2014). http://europepmc.org/abstract/med/25166084

    Xueyan Li, Yanyi Jiang, Yuan Yao, Zhiyi Bi, Longsheng Ma. Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J]. Acta Optica Sinica, 2018, 38(7): 0714002
    Download Citation