• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 1, 115 (2018)
Yeteng TAN*, Tao PU, Peng XIANG, Tao FANG, Haisong JIAO, and Huatao ZHU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2018.01.018 Cite this Article
    TAN Yeteng, PU Tao, XIANG Peng, FANG Tao, JIAO Haisong, ZHU Huatao. Physical-layer security of coherent time-spreading optical code division multiple access system[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 115 Copy Citation Text show less
    References

    [1] Shaneman K, Gray S. Optical network security: Technical analysis of fiber tapping mechanisms and methods for detection and prevention[C]. IEEE Military Communications Conference, 2004, 2(2): 711-716.

    [2] Bakarman H A, Shaari S, Ismail M. Security and performance tradeoffs in optical CDMA network systems[C]. International Conference on Photonics, 2010: 1-4.

    [3] Bakarman H A, Zahid A Z, et al. Simulation of security performance for unipolar and bipolar optical CDMA network systems[C]. IEEE Malaysia International Conference on Communications, 2009, 4(2): 367-370.

    [4] Shake T H. Confidentiality performance of spectral-phase-encoded optical CDMA[J]. Journal of Lightwave Technology, 2005, 23(4): 1652-1663.

    [5] Shake T H. Security performance of optical CDMA against eavesdropping[J]. Journal of Lightwave Technology, 2005, 23(2): 655-670.

    [6] Wang Zhenxing, Chang J, Prucnal P R. Theoretical analysis and experimental investigation on the confidentiality of 2-D incoherent optical CDMA system[J]. Journal of Lightwave Technology, 2010, 28(12): 1761-1769.

    [7] Bakarman H A, Shaari S, Ismail M. Security performance of spectral amplitude coding OCDMA systems[C]. International Conference on Electronic Design, 2009: 1-4.

    [8] Qin Liqiao, Yin Hongxi, et al. Security performance analysis of an M-code keying OCDMA system[J]. Photonic Network Communications, 2008, 15(1): 19-24.

    [9] Mukherjee A, Fakoorian S A, Huang Jing, et al. Principles of physical layer security in multiuser wireless networks: A survey[J]. IEEE Communications Surveys and Tutorials, 2014, 1(3): 1550-1573.

    [10] Bagherikaram G, Motahari A S, Khandani A K. Secrecy capacity region of Gaussian broadcast channel[C]. Conference on Information Sciences and Systems, 2009: 152-157.

    [11] Endo H, Han T S, Aoki T, et al. Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels[J]. IEEE Photonics Journal, 2015, 7(5): 1-18.

    [12] Guan K, Tulino A M, Winzer P J, et al. Secrecy capacities in space-division multiplexed fiber optic communication systems[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(7): 1325-1335.

    [13] Wyner A D. The wire-tap channel[J]. Bell Labs Technical Journal, 1975, 54(8): 1355-1387.

    [14] Shannon C E. Communication theory of secrecy Systems[J]. Bell System Technical Journal, 1949, 28(4): 656-715.

    [15] Agrawal G P. Fiber-Optic Communications Systems[M]. USA: Wiley-Interscience, 2002: 162-164.

    [16] Wang Xu, Kitayama K. Analysis of beat noise in coherent and incoherent time-spreading OCDMA[J]. Journal of Lightwave Technology, 2004, 22(10): 2226-2235.

    [17] Wang Xu, Matsushima K, Kitayama K. High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating[J]. Optics Letters, 2005, 30(4): 355-357.

    TAN Yeteng, PU Tao, XIANG Peng, FANG Tao, JIAO Haisong, ZHU Huatao. Physical-layer security of coherent time-spreading optical code division multiple access system[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 115
    Download Citation