• Laser & Optoelectronics Progress
  • Vol. 59, Issue 11, 1106006 (2022)
Tingzuo Chen, Xiaolong Ni, Suping Bai*, and Xin Yu
Author Affiliations
  • School of Electro-Optical Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • show less
    DOI: 10.3788/LOP202259.1106006 Cite this Article Set citation alerts
    Tingzuo Chen, Xiaolong Ni, Suping Bai, Xin Yu. Real-Time Acquisition and Positioning Technology of Unmanned Aerial Vehicle Optical Communication Based on Improved YOLOv4 Network[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1106006 Copy Citation Text show less
    Schematic diagram of the system
    Fig. 1. Schematic diagram of the system
    Structure of the system
    Fig. 2. Structure of the system
    Feature map attributes predicted by the YOLOv4 network
    Fig. 3. Feature map attributes predicted by the YOLOv4 network
    Simplified structure of the improved YOLOv4 network
    Fig. 4. Simplified structure of the improved YOLOv4 network
    Connection mode of three network structures. (a) Connection mode 1; (b) connection mode 2; (c) connection mode 3
    Fig. 5. Connection mode of three network structures. (a) Connection mode 1; (b) connection mode 2; (c) connection mode 3
    Principles of two feature fusion modes. (a) Concatenate; (b) add
    Fig. 6. Principles of two feature fusion modes. (a) Concatenate; (b) add
    Flow chart of the PID algorithm
    Fig. 7. Flow chart of the PID algorithm
    Some images in the data set
    Fig. 8. Some images in the data set
    Training results of the beacon spot data set
    Fig. 9. Training results of the beacon spot data set
    Training results of different networks. (a) Loss function; (b) mAP
    Fig. 10. Training results of different networks. (a) Loss function; (b) mAP
    Captured alignment result of the UAV. (a) Indoor environment; (b) background glare interference environment; (c) flight status
    Fig. 11. Captured alignment result of the UAV. (a) Indoor environment; (b) background glare interference environment; (c) flight status
    CountCategoryXTPXFPXFNXTN
    518beacon spot5032113
    Table 1. Recognition results of the test set
    Data setTraining setValidation setTraining set +validation setTest setTotal data set
    ImageObjectImageObjectImageObjectImageObjectImageObject
    Total821819910833320148165514005816492394823304379540
    PASCAL VOC 20072501630125106207501112608495212032996324640
    PASCAL VOC 2012571713609582313841115402745011540274502308054900
    Table 2. Statistics of PASCAL VOC 2007 and PASCAL VOC 2012 data sets
    NetworkTrainmAP /%FPS
    YOLOv4PASCAL VOC 2007+PASCAL VOC 2012768
    YOLOv4.tinyPASCAL VOC 2007+PASCAL VOC 20124947
    Improved YOLOv4PASCAL VOC 2007+PASCAL VOC 20126342
    Table 3. Detection results of different networks on the PASCAL VOC 2007 test set
    ParameterNVIDIA Jetson Xavier NX embedded system
    GPUNVIDIA Volta architecture with 384 NVIDIA CUDA® cores and 48 Tensor cores
    CPU6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB L3
    Memory8 GB 128-bit LPDDR4x @ 51.2 Gbit/s
    StoragemicroSD(128 G)
    Mechanical103 mm×90.5 mm×34.66 mm
    Table 4. Parameters of NVIDIA Jetson Xavier NX embedded system
    Tingzuo Chen, Xiaolong Ni, Suping Bai, Xin Yu. Real-Time Acquisition and Positioning Technology of Unmanned Aerial Vehicle Optical Communication Based on Improved YOLOv4 Network[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1106006
    Download Citation