• Acta Photonica Sinica
  • Vol. 46, Issue 4, 419003 (2017)
GAO Ying-jie1、2、* and YE Quan-yi3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174604.0419003 Cite this Article
    GAO Ying-jie, YE Quan-yi. Research on the Transmission Coefficient of the Plasma Photonic Crystals with the Symplectic Finite-difference Time-domain Method[J]. Acta Photonica Sinica, 2017, 46(4): 419003 Copy Citation Text show less
    References

    [1] SHIVESHWARI L, AWASTHI S K. Transmission properties of one-dimensional ternary plasma photonic crystals[J]. Physics of Plasmas (1994-present), 2015, 22(9): 092-129.

    [2] FENG Gang, GAO Li-na, HAO Dong-shan. Influence of photonic band gap in non-uniform plasma photonic crystals induced by compton scattering[J]. Acta Photonica Sinica, 2011, 40(7): 1071-1075.

    [3] JOHN S. Strong localization of photonsin certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

    [4] MA Li-na, JIANG Lan, ZHANG Xiao-hui, et al. Fabrication and properties of polyethylene glycol/titania one-dimensional photonic crystals[J]. Chinese Journal of Luminescence, 2015, 36(3): 355-360.

    [5] YEE K S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966, 14(3): 302-307.

    [6] ELSHERBENI A Z, DEMIR V. The finite-difference time-domain method for electromagnetics with MATLABR simulations[M]. IET, 2015.

    [7] ADHIKARI A, DEV K, ASUNDI A. Subwavelength metrological chracterization by Mueller matrix polarimeter and finite difference time domain method[J]. Optics and Lasers in Engineering, 2016, 86: 242-247.

    [8] FANG J, REN J. A locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips[J]. IEEE Transactions on Microwave Theory and Techniques, 1989, 41(5): 830-838.

    [9] TURKEL E, YEFET A. Fourth order method for Maxwell′s equations on a staggered mesh[C]. IEEE Antennas and Propagation Society International Symposium, 1997, 4: 2156-2159.

    [10] COLE J B. A high-accuracy realization of the Yee algorithm using non-standard finite differences[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(6): 991-996.

    [11] FORGY E A, CHEW W C. A time-domain method with isotropic dispersion and increased stability on an overlapped lattice[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(7): 983-996.

    [12] KRUMPHOLZ M, KATEHI L P B. MRTD: new time-domain schemes based on multiresolution analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(4): 555-571.

    [13] CHEN Y, CAO Q, MITTRA R. Multiresolution time domain scheme for electromagnetic engineering[M]. NewYork: John wiley&Sons, 2005.

    [14] NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(10): 2003-2007.

    [15] LIU Q H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength[J]. Microwave and Optical Technology Letters, 1997, 15(3): 158-165.

    [16] SHAO Z, WEI G W, ZHAO S. DSC time-domain solution of Maxwell’s equations[J]. Journal of Computational Physics, 2003, 189(2): 427-453.

    [17] ZHAI P W, KATTAWAR G W, YANG P, et al. Application of the symplectic finite-difference time-domain method to light scattering by small particles[J]. Applied Optics, 2005, 44(9): 1650-1656.

    [18] SHA W E I, HUANG Z, CHEN M, et al. Survey on symplectic finite-difference time-domain schemes for Maxwell’s equations[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 493-500.

    [20] HIRONO T, LUI W, SEKI S, et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1640-1648.

    [21] RIEBEN R, WHITE D, RODRIGUE G. High-Order Symplectic integration methods for finite element solutions to time dependent maxwell equation[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(8): 2190-2195.

    [22] SHEN Jing, SHA Wei, HUANG Zhi-xiang, et al. High-oder symplectic FDTD scheme for solving time-dependent Schrdinger equation [J]. Acta Physica Sinica, 2012, 61(19): 190202.

    [23] LI Min-quan, WU Xian-liang. An SFDTD algorithm for the analysis of microstrip patch antennas[J]. Acta Electronica Sinica, 2006, 34(12A): 2544-2546.

    [24] ZHAO Jin, XU Shan-jia, WU Xian-liang. A novel high-order finite-difference time-domain method[J]. Chinese Journal of Radio Science, 2004, 19(5): 569-572.

    [25] GAO Y J, YANG H W. A high-order, symplectic, finite-difference time-domain scheme for bioelectromagnetic applications within the mother/fetus model[J]. Plos One, 2014, 9(12): e114425-e114425.

    [26] GAO Y J, YANG H W, WANG G B. A research on the electromagnetic properties of plasma photonic crystal based on the symplectic finite-difference time-domain method[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(4): 1838-1841.

    [27] YANG H W, YANG Z K, LIU H, et al. Plasma photonic crystals numerical and filter characteristics analysis based on symplectic algorithm[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(17): 4762-4765.

    [28] LIU Shao-bin, ZHU Chuan-xi, YUAN Nai-chang. FDTD simulation for plasma photonic crystals[J]. Acta Physica Sinica, 2005, 54(6): 2804-2808.

    GAO Ying-jie, YE Quan-yi. Research on the Transmission Coefficient of the Plasma Photonic Crystals with the Symplectic Finite-difference Time-domain Method[J]. Acta Photonica Sinica, 2017, 46(4): 419003
    Download Citation