• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1101004 (2021)
Luo Wang, Chuanfei Yao, Pingxue Li*, Xi Zhang, Yongjing Wu, Xuan Wang, and Linjing Yang
Author Affiliations
  • Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/CJL202148.1101004 Cite this Article Set citation alerts
    Luo Wang, Chuanfei Yao, Pingxue Li, Xi Zhang, Yongjing Wu, Xuan Wang, Linjing Yang. Algorithm Optimization for Fast Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Laser[J]. Chinese Journal of Lasers, 2021, 48(11): 1101004 Copy Citation Text show less
    References

    [1] Li W W, Zhang X J, Wang H et al. Research progress of mid-infrared rare earth ion-doped fiber lasers at 3 μm[J]. Laser & Optoelectronics Progress, 56, 170605(2019).

    [2] Jackson S D. Towards high-power mid-infrared emission from afibre laser[J]. Nature Photonics, 6, 423-431(2012). http://www.nature.com/articles/nphoton.2012.149

    [3] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019). http://www.researchgate.net/publication/333791870_Review_of_mid-infrared_mode-locked_laser_sources_in_the_20_m_m-35_m_m_spectral_region

    [4] Kim S S, Young C, Vidakovic B et al. Potential and challenges for mid-infrared sensors in breath diagnostics[J]. IEEE Sensors Journal, 10, 145-158(2010). http://ieeexplore.ieee.org/document/5353801

    [5] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 169, 400-405(2016).

    [6] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [7] Ye B, Dai S X, Liu Z J et al. Research progress of Er 3+∶ZBLAN fiber laser operating at 2.7 μm[J]. Laser & Optoelectronics Progress, 52, 090004(2015).

    [8] Yao C F. Design and preparation of fluorotellurite glass fibers and their application in mid-infrared supercontinuum generation[D](2018).

    [9] Aydın Y O. Development of high-power 3 μm fiber laser sources and components[D](2019).

    [10] Shen D Y, Fan D Y. Mid-infrared lasers[M], 152-156(2015).

    [11] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [12] Goya K, Uehara H, Konishi D et al. Stable 35-W Er∶ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 12, 102007(2019). http://www.researchgate.net/publication/335494227_Stable_35-W_Er_ZBLAN_fiber_laser_with_CaF2_end_caps

    [13] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [14] Duval S, Wang Y C et al. Ultrafast mid-infrared fiber lasers beyond 3 μm[C]. //CLEO: Science and Innovations 2019, May 5-10, 2019, San Jose, California. Washington, DC: OSA, SF2L, 1(2019).

    [15] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014). http://dx.doi.org/10.1364/ol.39.000493

    [16] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).

    [17] Schneider J. Fluoridefibre laser operating at 3.9 μm[J]. Electronics Letters, 31, 1250-1251(1995).

    [18] Luan K P, Shen Y L, Tao M M et al. Numerical simulation of 3.5 μm dual-wavelength pumped Er∶ZBLAN fiber lasers[J]. Chinese Journal of Lasers, 46, 1001008(2019).

    [19] Sandrock T, Fischer D, Glas P et al. Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm[J]. Optics Letters, 24, 1284-1286(1999).

    [20] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [21] Paradis P, Fortin V, Aydin Y O et al. 10 W-level gain-switched all-fiber laser at 2.8 μm[J]. Optics Letters, 43, 3196-3199(2018).

    [22] Lü Y, Wei C, Zhang H et al. Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 7, 14-18(2019).

    [23] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016). http://www.researchgate.net/publication/283180858_Graphene_Mode-locked_Fiber_Laser_at_28_mm

    [24] Shen Y L, Wang Y S, Chen H W et al. Wavelength-tunable passively mode-locked mid-infrared Er 3+-doped ZBLAN fiber laser[J]. Scientific Reports, 7, 14913(2017).

    [25] Többen H. CW lasing at 3.45 μm in erbium-doped fluorozirconate fibres[J]. Frequenz, 45, 250-252(1991). http://adsabs.harvard.edu/abs/1991Freq...45..250T

    [26] Többen H. Temperature-tunable 3.5 μm fibre laser[J]. Electronics Letters, 29, 667-669(1993). http://digital-library.theiet.org/content/journals/10.1049/el_19930447

    [27] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).

    [28] Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er∶ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 15, 111402(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ322c4b529abb3093

    [29] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017). http://europepmc.org/abstract/MED/28569843

    [30] Bawden N, Matsukuma H, Henderson-Sapir O et al. Actively Q-switched dual-wavelength pumped Er 3+∶ZBLAN fiber laser at 3.47 μm[J]. Optics Letters, 43, 2724-2727(2018). http://europepmc.org/abstract/MED/29856377

    [31] Xie G Q, Qin Z P. Mid-infrared ultrafast lasers based on two-dimension materials[C]. //CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington, DC: OSA, TH2G, 2(2018).

    [32] Malouf A, Henderson-Sapir O, Gorjan M et al. Numerical modeling of 3.5 μm dual-wavelength pumped erbium-doped mid-infrared fiber lasers[J]. IEEE Journal of Quantum Electronics, 52, 1-12(2016).

    [33] Gorjan M, Marinček M, Čopič M. Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers[J]. IEEE Journal of Quantum Electronics, 47, 262-273(2011). http://ieeexplore.ieee.org/document/5692158

    [34] Maes F, Fortin V, Bernier M et al. Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers[J]. IEEE Journal of Quantum Electronics, 53, 1-8(2017). http://www.ingentaconnect.com/content/iee/00189197/2017/00000053/00000002/art00004

    [35] Press W H, Teukolsky S A et al. Numerical recipes in C: the art of scientific computing[M]. 2nd ed, 43-772(2002).

    [36] Ou P. MATLAB source program of “higher optical simulation”[M]. 2nd ed, 264-332(2014).

    [37] Sujecki S. An efficient algorithm for steady state analysis of fibre lasers operating under cascade pumping scheme[J]. International Journal of Electronics and Telecommunications, 60, 143-149(2014). http://www.degruyter.com/view/j/eletel.2014.60.issue-2/eletel-2014-0017/eletel-2014-0017.xml

    [38] Wei Y. Research on some algebraic inverse eigenvalue problems[D](2015).

    [39] Moler C B. Numerical computing with Matlab[M]. Auckland: Society for Industrial and Applied Mathematics, 117-217(2004).

    Luo Wang, Chuanfei Yao, Pingxue Li, Xi Zhang, Yongjing Wu, Xuan Wang, Linjing Yang. Algorithm Optimization for Fast Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Laser[J]. Chinese Journal of Lasers, 2021, 48(11): 1101004
    Download Citation