[1] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).
[2] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol., 104, 946-952(1995).
[3] P. Kner, J. W. Sedat, D. A. Agard, Z. Kam. High-resolution widefield microscopy with adaptive optics for spherical aberration correction and motionless focusing. J. Microsc., 237, 136-147(2010).
[4] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lind-Wasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess. Imaging intra-cellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[5] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).
[6] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).
[7] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).
[8] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc. SPIE, 3919, 141-150(2000).
[9] P. Gao, G. Pedrini, W. Osten. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett., 38, 1328-1330(2013).
[10] W. Gong, K. Si, N. Chen, C. J. R. Sheppard. Improved spatial resolution in fluorescence focal modulation microscopy. Opt. Lett., 34, 3508-3510(2009).
[11] M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).
[12] E. H. K. Stelzer. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods, 12, 23-26(2014).
[13] V. Trivedi, T. V. Truong, L. A. Trinh, D. B. Holland, M. Liebling, S. E. Fraser. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration. Biomed. Opt. Express, 6, 2056-2066(2015).
[14] M. A. A. Neil, R. Ju skaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).
[15] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Methods, 8, 811-819(2011).
[16] P. Gao, U. Nienhaus. Confocal laser scanning microscopy with spatiotemporal structured illumination. Opt. Lett., 41, 1193-1196(2016).
[17] Q. Song, K. Isobe, K. Hirosawa, K. Midorikawa, F. Kannari. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability. Proc. SPIE, 9329, 93292N(2015).
[18] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics, 7, 205-209(2013).
[19] J. A. Kubby. Adaptive Optics for Biological Imaging(2013).
[20] O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, J. Kubby. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons. Opt. Express, 18, 17521-17532(2010).
[21] O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, J. Kubby. Adaptive optics widefield microscopy using direct wavefront sensing. Opt. Lett., 36, 825-827(2011).
[22] P. Vermeulen, E. Muro, T. Pons, V. Loriette, A. Fragola. Adaptive optics for fluorescence widefield microscopy using spectrally independent guide star and markers. J. Biomed. Opt., 16, 076019(2011).
[23] X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, J. Kubby. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett., 36, 1062-1064(2011).
[24] X. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, B. Sullivan, J. Kubby. Live imaging using adaptive optics with fluorescent protein guide-stars. Opt. Express, 20, 15969-15982(2012).
[25] R. Aviles-Espinosa, A. Jordi, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, L. Xavier, D. Artigas, P. Loza-Alvarez. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express, 2, 3135-3149(2011).
[26] X. Tao, A. Norton, M. Kissel, O. Azucena, J. Kubby. Adaptive optical two-photon microscopy using auto fluorescent guide stars. Opt. Lett., 38, 5075-5078(2013).
[27] M. Booth. Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express, 14, 1339-1352(2006).
[28] B. Thomas, A. Wolstenholme, S. N. Chaudhari, E. T. Kipreos, P. Kner. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J. Biomed. Opt., 20, 026006(2015).
[29] D. Debarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, T. Wilson. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).
[30] D. Debarre, E. J. Botcherby, M. J. Booth, T. Wilson. Adaptive optics for structured illumination microscopy. Opt. Express, 16, 9290-9305(2008).
[31] K. F. Tehrani, J. Xu, Y. Zhang, P. Shen, P. Kner. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express, 23, 13677-13692(2015).
[32] M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA, 99, 5788-5792(2002).
[33] P. Krizek, I. Raaka, G. M. Hagen. Flexible structured illumination microscope with a programmable illumination array. Opt. Express, 20, 24585-24599(2012).
[34] M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, A. Fragola. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain. J. Biomed. Opt., 21, 036006(2016).
[35] D. C. Chen, S. M. Jones, D. A. Silva, S. S. Olivier. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. J. Opt. Soc. Am. A, 24, 1305-1312(2007).
[36] B. C. Platt, R. Shack. History and principles of Shack–Hartmann wavefront sensing. J. Refractive Surg., 17, S573-S577(2001).
[37] J. Porter. Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications(2006).
[38] S. A. Shroff, J. R. Fienup, D. R. Williams. OTF compensation in structured illumination superresolution images. Proc. SPIE, 7094, 709402(2008).
[39] M. Kissel, M. Reinig, O. Azucena, J. J. Diaz Leon, J. Kubby. Development and testing of an AO-structured illumination microscope. Proc. SPIE, 8978, 89780G(2014).
[40] A. Masson, M. Pedrazzani, S. Benrezzak, P. Tchenio, T. Preat, D. Nutarelli. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging. Opt. Express, 22, 1243-1256(2014).
[41] N. Chakrova, R. Heintzmann, B. Rieger, S. Stallinga. Studying different illumination patterns for resolution improvement in fluorescence microscopy. Opt. Express, 23, 31367-31383(2015).
[42] J. W. Hardy. Adaptive Optics for Astronomical Telescopes(1998).
[43] M. R. Reinig, S. W. Novak, X. Tao, L. A. Bentolila, D. G. Roberts, A. MacKenzie-Graham, S. E. Godshalk, M. A. Raven, D. W. Knowles, J. Kubby. Enhancing image quality in cleared tissue with adaptive optics. J. Biomed. Opt., 21, 121508(2016).