• Photonics Research
  • Vol. 5, Issue 4, 329 (2017)
Qinggele Li1, Marc Reinig1, Daich Kamiyama2,3, Bo Huang2..., Xiaodong Tao1, Alex Bardales1 and Joel Kubby1,*|Show fewer author(s)
Author Affiliations
  • 1W.M. Keck Center for Adaptive Optical Microscopy, Baskin Engineering, University of California, Santa Cruz, California 95064, USA
  • 2Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
  • 3Current address: Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
  • show less
    DOI: 10.1364/PRJ.5.000329 Cite this Article Set citation alerts
    Qinggele Li, Marc Reinig, Daich Kamiyama, Bo Huang, Xiaodong Tao, Alex Bardales, Joel Kubby, "Woofertweeter adaptive optical structured illumination microscopy," Photonics Res. 5, 329 (2017) Copy Citation Text show less
    References

    [1] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [2] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol., 104, 946-952(1995).

    [3] P. Kner, J. W. Sedat, D. A. Agard, Z. Kam. High-resolution widefield microscopy with adaptive optics for spherical aberration correction and motionless focusing. J. Microsc., 237, 136-147(2010).

    [4] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lind-Wasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess. Imaging intra-cellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [5] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [6] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [7] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [8] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc. SPIE, 3919, 141-150(2000).

    [9] P. Gao, G. Pedrini, W. Osten. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett., 38, 1328-1330(2013).

    [10] W. Gong, K. Si, N. Chen, C. J. R. Sheppard. Improved spatial resolution in fluorescence focal modulation microscopy. Opt. Lett., 34, 3508-3510(2009).

    [11] M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [12] E. H. K. Stelzer. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods, 12, 23-26(2014).

    [13] V. Trivedi, T. V. Truong, L. A. Trinh, D. B. Holland, M. Liebling, S. E. Fraser. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration. Biomed. Opt. Express, 6, 2056-2066(2015).

    [14] M. A. A. Neil, R. Ju skaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [15] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Methods, 8, 811-819(2011).

    [16] P. Gao, U. Nienhaus. Confocal laser scanning microscopy with spatiotemporal structured illumination. Opt. Lett., 41, 1193-1196(2016).

    [17] Q. Song, K. Isobe, K. Hirosawa, K. Midorikawa, F. Kannari. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability. Proc. SPIE, 9329, 93292N(2015).

    [18] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics, 7, 205-209(2013).

    [19] J. A. Kubby. Adaptive Optics for Biological Imaging(2013).

    [20] O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, J. Kubby. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons. Opt. Express, 18, 17521-17532(2010).

    [21] O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, J. Kubby. Adaptive optics widefield microscopy using direct wavefront sensing. Opt. Lett., 36, 825-827(2011).

    [22] P. Vermeulen, E. Muro, T. Pons, V. Loriette, A. Fragola. Adaptive optics for fluorescence widefield microscopy using spectrally independent guide star and markers. J. Biomed. Opt., 16, 076019(2011).

    [23] X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, J. Kubby. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett., 36, 1062-1064(2011).

    [24] X. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, B. Sullivan, J. Kubby. Live imaging using adaptive optics with fluorescent protein guide-stars. Opt. Express, 20, 15969-15982(2012).

    [25] R. Aviles-Espinosa, A. Jordi, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, L. Xavier, D. Artigas, P. Loza-Alvarez. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express, 2, 3135-3149(2011).

    [26] X. Tao, A. Norton, M. Kissel, O. Azucena, J. Kubby. Adaptive optical two-photon microscopy using auto fluorescent guide stars. Opt. Lett., 38, 5075-5078(2013).

    [27] M. Booth. Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express, 14, 1339-1352(2006).

    [28] B. Thomas, A. Wolstenholme, S. N. Chaudhari, E. T. Kipreos, P. Kner. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J. Biomed. Opt., 20, 026006(2015).

    [29] D. Debarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, T. Wilson. Image-based adaptive optics for two-photon microscopy. Opt. Lett., 34, 2495-2497(2009).

    [30] D. Debarre, E. J. Botcherby, M. J. Booth, T. Wilson. Adaptive optics for structured illumination microscopy. Opt. Express, 16, 9290-9305(2008).

    [31] K. F. Tehrani, J. Xu, Y. Zhang, P. Shen, P. Kner. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express, 23, 13677-13692(2015).

    [32] M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA, 99, 5788-5792(2002).

    [33] P. Krizek, I. Raaka, G. M. Hagen. Flexible structured illumination microscope with a programmable illumination array. Opt. Express, 20, 24585-24599(2012).

    [34] M. Pedrazzani, V. Loriette, P. Tchenio, S. Benrezzak, D. Nutarelli, A. Fragola. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain. J. Biomed. Opt., 21, 036006(2016).

    [35] D. C. Chen, S. M. Jones, D. A. Silva, S. S. Olivier. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. J. Opt. Soc. Am. A, 24, 1305-1312(2007).

    [36] B. C. Platt, R. Shack. History and principles of Shack–Hartmann wavefront sensing. J. Refractive Surg., 17, S573-S577(2001).

    [37] J. Porter. Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications(2006).

    [38] S. A. Shroff, J. R. Fienup, D. R. Williams. OTF compensation in structured illumination superresolution images. Proc. SPIE, 7094, 709402(2008).

    [39] M. Kissel, M. Reinig, O. Azucena, J. J. Diaz Leon, J. Kubby. Development and testing of an AO-structured illumination microscope. Proc. SPIE, 8978, 89780G(2014).

    [40] A. Masson, M. Pedrazzani, S. Benrezzak, P. Tchenio, T. Preat, D. Nutarelli. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging. Opt. Express, 22, 1243-1256(2014).

    [41] N. Chakrova, R. Heintzmann, B. Rieger, S. Stallinga. Studying different illumination patterns for resolution improvement in fluorescence microscopy. Opt. Express, 23, 31367-31383(2015).

    [42] J. W. Hardy. Adaptive Optics for Astronomical Telescopes(1998).

    [43] M. R. Reinig, S. W. Novak, X. Tao, L. A. Bentolila, D. G. Roberts, A. MacKenzie-Graham, S. E. Godshalk, M. A. Raven, D. W. Knowles, J. Kubby. Enhancing image quality in cleared tissue with adaptive optics. J. Biomed. Opt., 21, 121508(2016).

    CLP Journals

    [1] Houkai Chen, Xiaojing Wu, Yuquan Zhang, Yong Yang, Changjun Min, Siwei Zhu, Xiaocong Yuan, Qiaoliang Bao, Jing Bu, "Wide-field in situ multiplexed Raman imaging with superresolution," Photonics Res. 6, 530 (2018)

    [2] Pouya Rajaeipour, Kaustubh Banerjee, Alex Dorn, Hans Zappe, Çağlar Ataman, "Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics," Adv. Photon. 2, 066005 (2020)

    Qinggele Li, Marc Reinig, Daich Kamiyama, Bo Huang, Xiaodong Tao, Alex Bardales, Joel Kubby, "Woofertweeter adaptive optical structured illumination microscopy," Photonics Res. 5, 329 (2017)
    Download Citation