• Laser & Optoelectronics Progress
  • Vol. 56, Issue 10, 100004 (2019)
Yansheng Yao1、*, Jun Wang1、2, Qingbo Chen1, Chen Ding1, Jianping Tang1, and Zhangsen Ge1
Author Affiliations
  • 1 School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2 Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, China
  • show less
    DOI: 10.3788/LOP56.100004 Cite this Article Set citation alerts
    Yansheng Yao, Jun Wang, Qingbo Chen, Chen Ding, Jianping Tang, Zhangsen Ge. Research Status of Defects and Defect Treatment Technology for Laser Additive Manufactured Products[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100004 Copy Citation Text show less
    References

    [1] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 42, 1-4(2013).

    [2] Yang Y Q, Chen J, Song Z H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [3] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 35, 2690-3698(2014).

    [4] Chen J L, Dong P, Zhang K et al[J]. Potential applications of additive manufacture in metal material for aerospace applications Electromachining & Mould, 2014, 66-69.

    [5] Zhang L C, Attar H, Calin M et al. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications[J]. Materials & Processing Report, 31, 66-76(2016). http://www.tandfonline.com/doi/abs/10.1179/1753555715Y.0000000076

    [6] Zhao Y H, Wang Z G, Long Y et al. Research on in fluential factor of temperature of molten pool of Inconel 625 superalloy by laser additive manufacturing[J]. Applied Laser, 35, 137-144(2015).

    [7] Zhang X W. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 31, 10-16(2016).

    [8] Liu R, Wang Z, Sparks T et al. Aerospace applications of laser additive manufacturing[M]. Holland: Elsevier, 351-371(2017).

    [9] Wu K, Zhang J L, Wu B et al. Research and development of Ni-based superalloy fabricated by laser additive manufacturing technology[J]. Journal of Iron and Steel Research, 29, 953-959(2017).

    [10] Su Y D, Wang X M, Wu B et al. Application potential of 4D printing technology in development of aircraft[J]. Journal of Aeronautical Materials, 38, 59-69(2018).

    [11] Yu Y. ShiT C, Sun F F, et al. Study and application status of additive manufacturing of typical inorganic non-metallic materials[J]. Materials Review, 30, 119-129(2016).

    [12] Duan M S, Wu F, Liu R X et al. Application of laser additive manufacturing technology in ophthalmology[J]. Laser & Optoelectronics Progress, 55, 011406(2018).

    [13] Lusquiños F, Val J D, Arias-González F et al. Bioceramic 3D implants produced by laser assisted additive manufacturing[J]. Physics Procedia, 56, 309-316(2014). http://www.sciencedirect.com/science/article/pii/S1875389214003216

    [14] Khorasani A M. Machining of spherical component fabricated by selected laser melting, part II: Application of Ti in biomedical[D]. Victoria: Deakin University(2017).

    [15] Ma Z S, Chen G S, Ma D X et al. Metal additive manufacturing technologies used in equipment emergency support[J]. Ordnance Material Science and Engineering, 39, 119-124(2016).

    [16] Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys[J]. Materials & Processing Report, 31, 90-97(2015). http://www.tandfonline.com/doi/abs/10.1179/1753555715Y.0000000079

    [17] Huang C P, Huang S W, Liu F C[J]. Metal material additive manufacturing technology Metal Working (Thermal processing), 2016, 34-38.

    [18] Wang Y Q, Shen J X, Wu H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 36, 89-98(2016).

    [19] Rosa B, Mognol P, Hascoët J. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 27, S29102(2015). http://scitation.aip.org/content/lia/journal/jla/27/s2/10.2351/1.4906385

    [20] Özel T, Altay A, Donmez A et al. Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion[J]. The International Journal of Advanced Manufacturing Technology, 94, 4451-4458(2018). http://link.springer.com/article/10.1007%2Fs00170-017-1187-z

    [21] Rosa B, Brient A, Samper S et al. Influence of additive laser manufacturing parameters on surface using density of partially melted particles[J]. Surface Topography: Metrology and Properties, 4, 045002(2016). http://adsabs.harvard.edu/abs/2016SuTMP...4d5002R

    [22] Wu A S, Brown D W, Kumar M et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel[J]. Metallurgical & Materials Transactions A, 45, 6260-6270(2014). http://link.springer.com/article/10.1007/s11661-014-2549-x

    [23] Zhou X, Zhou Y, Wei Q S et al. Study on cracking mechanism and inhibiting process of near α Titanium alloy formed by SLM[J]. China Mechanical Engineering, 26, 2816-2820(2015).

    [24] Shao Y C, Chen C J, Zhang M et al. Research on crack issue of Deloro 40Ni alloys prototype fabricated by laser additive manufacturing[J]. Applied Laser, 36, 397-402(2016).

    [25] Shishkovsky I, Saphronov V. Peculiarities of selective laser melting process for permalloy powder[J]. Materials Letters, 171, 208-211(2016). http://www.sciencedirect.com/science/article/pii/S0167577X16302567

    [26] Demir A G, Previtali B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction[J]. International Journal of Advanced Manufacturing Technology, 93, 2697-2709(2017). http://link.springer.com/article/10.1007/s00170-017-0697-z

    [27] Sears J W. Direct laser powder deposition-'State of the Art'. [C]∥Proceedings of the 1999 TMS Fall Extraction and Processing Meeting, November 1, 1999, San Diego, California. [S. l. : s. n. ], 213-226(1999).

    [28] Beaman J J. -07-02[P]. Deckard C R. Selective laser sintering with assisted powder handling: US5053090A.(1990).

    [29] Kruth J P. Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 149, 616-622(2004).

    [30] Vrancken B, Cain V, Knutsen R et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 87, 29-32(2014). http://www.sciencedirect.com/science/article/pii/S1359646214002164

    [31] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 12, 254-265(2006). http://www.tandfonline.com/servlet/linkout?suffix=CIT0029&dbid=16&doi=10.1080%2F14686996.2018.1455154&key=10.1108%2F13552540610707013

    [32] Alimardani M, Toyserkani E, Huissoon J P et al. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation[J]. Optics & Lasers in Engineering, 47, 1160-1168(2009). http://www.sciencedirect.com/science/article/pii/S0143816609001535

    [33] Wei L, Lin X, Wang M et al[J]. Numerical simulation on laser additive manufacturing process for metal components Aeronautical Manufacturing Technology, 2017, 16-25.

    [34] Wu J J, Wang L Z, An X G. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J]. Optik, 137, 65-78(2017). http://www.sciencedirect.com/science/article/pii/S0030402617302036

    [35] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 88, 95-107(2015). http://www.sciencedirect.com/science/article/pii/S0890695514001424

    [36] Bartkowiak K, Ullrich S, Frick T et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 12, 393-401(2011). http://www.sciencedirect.com/science/article/pii/S1875389211001295

    [37] Tillmann W, Schaak C, Nellesen J et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 13, 93-102(2017). http://www.sciencedirect.com/science/article/pii/S2214860416300495

    [38] Zhang S Y, Lin X, Chen J et al. Influence of heat treatment on residual stress of Ti-6Al-4V alloy by laser solid forming[J]. Rare Metal Materials and Engineering, 38, 774-778(2009).

    [39] Vilaro T, Colin C, Bartout J D et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science & Engineering A, 534, 446-451(2012). http://www.sciencedirect.com/science/article/pii/S0921509311013311

    [40] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXXB201323004.htm

    [41] Zhang J, Li S, Wei Q S et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 39, 961-966(2015).

    [42] Lai Y B, Liu W J, Zhao J B et al. Experimental study on residual stress in titanium alloy laser additive manufacturing[J]. Applied Mechanics & Materials, 431, 20-26(2013). http://www.scientific.net/AMM.431.20

    [43] Yang Q Y, Wu Y D, Sha F. Microstructure and mechanical properties of Inconel 625 alloy manufactured by selective laser melting[J]. Materials for Mechanical Engineering, 40, 83-87(2016).

    [44] Amato K N, Gaytan S M, Murr L E et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 60, 2229-2239(2012). http://www.sciencedirect.com/science/article/pii/S1359645411008949

    [45] Wang Z M, Guan K, Gao M et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys & Compounds, 513, 518-523(2012). http://www.sciencedirect.com/science/article/pii/S0925838811020767

    [46] Pröbstle M, Neumeier S, Hopfenmüller J et al. Superior creep strength of a nickel-based superalloy produced by selective laser melting[J]. Materials Science and Engineering: A, 674, 299-307(2016). http://www.sciencedirect.com/science/article/pii/S092150931630822X

    [47] Yan S X, Dong S Y, Xu B S et al. Mechanics of removing residual stress of Fe314 cladding layers with laser shock processing[J]. Chinese Journal of Lasers, 40, 1003004(2013).

    [48] Sun J, Zhao J F, Xie N et al[J]. Residual stress of laser melt cladding assisted by electromagnetic field Journal of Nanjing University of Aeronautics & Astronautics, 2017, 805-811.

    [49] Ding J, Colegrove P, Mehnen J et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 50, 3315-3322(2011). http://www.sciencedirect.com/science/article/pii/S092702561100365X

    [50] Ding J, Colegrove P, Mehnen J et al. A computationally efficient finite element model of wire and arc additive manufacture[J]. International Journal of Advanced Manufacturing Technology, 70, 227-236(2014). http://link.springer.com/article/10.1007/s00170-013-5261-x

    [51] Xu W, Brandt M, Sun S et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 85, 74-84(2015). http://www.sciencedirect.com/science/article/pii/S1359645414008817

    [52] Qin L Y, Wang W, Yang G et al. Experimental study on ultrasonic-assisted laser metal deposition of Titanium alloy[J]. Chinese Journal of Lasers, 40, 0103001(2013).

    [53] Wang T, Zhang A F, Liang S D et al. Research on as-deposited microstructures and properties of IN718 parts by ultrasonic vibration-assisted laser metal forming[J]. Chinese Journal of Lasers, 43, 1102005(2016).

    [54] Yuan D, Gao H B, Sun X J et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 61, 40-48(2018).

    [55] Montazeri M, Ghaini F M. The liquation cracking behavior of IN738LC superalloy during low power Nd∶YAG pulsed laser welding[J]. Materials Characterization, 67, 65-73(2012). http://www.sciencedirect.com/science/article/pii/S1044580312000447

    [56] Ojo O A. Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition[J]. Materials Science and Technology, 23, 1149-1155(2007). http://www.tandfonline.com/doi/abs/10.1179/174328407X213323

    [57] Song B, Dong S J, Zhang B C et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 35, 120-125(2012). http://www.sciencedirect.com/science/article/pii/S0261306911006765

    [58] Gu D D, Hagedorn Y C, Meiners W et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 60, 3849-3860(2012). http://www.sciencedirect.com/science/article/pii/S1359645412002522

    [59] Kone ná R, Kunz L, Nicoletto G et al. . Long fatigue crack growth in Inconel 718 produced by selective laser melting[J]. International Journal of Fatigue, 92, 499-506(2016). http://www.sciencedirect.com/science/article/pii/S0142112316300172

    [60] Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials & Design, 89, 770-784(2016). http://www.sciencedirect.com/science/article/pii/S0264127515306055

    [61] Cheng L Y, Zhang S, Wei Q S et al. Microstructure and mechanical properties of stainless steel and nano hydroxyapatite composites fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 24, 1510-1517(2014).

    [62] Gu D D, Dai D H, Xia M J et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 49, 645-652(2017).

    [63] Hou H P, Liang Y C, He Y L et al. Microstructural evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0202007(2017).

    [64] Liu K, Wang R, Qi H et al. Effects of HIP on microstructure and mechanical properties of K4536 alloy manufactured by SLM[J]. Journal of Aeronautical Materials, 38, 46-51(2018).

    [65] Benedetti M, Fontanari V, Bandini M et al. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity[J]. International Journal of Fatigue, 107, 96-109(2018). http://www.sciencedirect.com/science/article/pii/S014211231730419X

    [66] Shi F, Zhao J B, Wang Z G et al. Research on processing technology of superalloy K465 via laser additive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 36, 1298-1302(2017).

    [67] Liu Z W, Hou C J, Wang L F et al[J]. Study on selective multi-laser beam melting technology Manufacturing Technology & Machine Tool, 2018, 56-59.

    [68] Huang W D, Lin X. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 29, 12-27, 49(2010).

    [69] Liu Y S, Han P L, Hu S F et al[J]. Development of laser additive manufacturing with metallic materials and its application in aviation engines Aeronautical Manufacturing Technology, 2014, 62-67.

    [70] Chen C Y, Deng Q L, Song J L[J]. The influence of ultrasonic vibration on the process of laser cladding Electromachining & Mould, 2005, 37-40.

    [71] Fan X F, Zhou J, Qiu C J et al. Experimental study on surface characteristics of laser cladding layer regulated by high-frequency microforging[J]. Journal of Thermal Spray Technology, 20, 456-464(2011). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s11666-010-9534-8

    [72] Tolochko N K, Mozzharov S E, Yadroitsev I A et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 10, 78-87(2004). http://www.emeraldinsight.com/doi/full/10.1108/13552540410526953

    [73] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 253, 8064-8069(2007). http://www.sciencedirect.com/science/article/pii/S0169433207003534

    [74] Yadroitsev I, Gusarov A, Yadroitsava I et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 210, 1624-1631(2010). http://www.sciencedirect.com/science/article/pii/S0924013610001469

    [75] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 30, 2903-2910(2009). http://www.sciencedirect.com/science/article/pii/S0261306909000181

    [76] Gu D D, Wang H Q, Zhang G Q. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder[J]. Metallurgical and Materials Transactions A, 45, 464-476(2014). http://link.springer.com/article/10.1007/s11661-013-1968-4

    [77] Li R D. Research on key basic problems of selective laser melting of metal powder[D]. Wuhan: Huazhong University of Science and Technology, 51-74(2010).

    [78] Li R D, Liu J H, Shi Y S et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 59, 1025-1035(2012). http://www.tandfonline.com/servlet/linkout?suffix=CIT0020&dbid=16&doi=10.1080%2F14686996.2018.1455154&key=10.1007%2Fs00170-011-3566-1

    [79] Wu W H, Yang Y Q, Wang D. Balling phenomenon in selective laser melting process[J]. Journal of South China University of Technology(Natural Science Edition), 38, 110-115(2010).

    [80] Wang D, Yang Y Q, Su X B et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 58, 1189-1199(2012). http://link.springer.com/article/10.1007/s00170-011-3443-y

    [81] Dai D H, Gu D D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 355, 310-319(2015). http://www.sciencedirect.com/science/article/pii/S0169433215016098

    [82] Chen H Y, Gu D D, Gu R H et al. Microstructure evolution and mechanical properties of 5CrNi4Mo Die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 43, 0203003(2016).

    [83] Qiu C L, Panwisawas C, Ward M et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 96, 72-79(2015). http://www.sciencedirect.com/science/article/pii/S1359645415003870

    [84] Zhang G, Wang J H, Zhang H. Research progress of balling phenomena in selective laser melting[J]. Foundry Technology, 38, 262-265(2017).

    [85] Zhu H H, Lu L. Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder[J]. Journal of Materials Processing Technology, 140, 314-317(2003). http://www.sciencedirect.com/science/article/pii/S0924013603007556

    [86] Deng S S, Yang Y Q, Li Y et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 43, 1202003(2016).

    [87] Ahsan M N, Pinkerton A J, Moat R J et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders[J]. Materials Science and Engineering: A, 528, 7648-7657(2011).

    [88] Shi Q M, Gu D D, Xia M J et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology, 84, 9-22(2016). http://www.sciencedirect.com/science/article/pii/S0030399215307349

    [89] Xu J G, Chen Y, Chen H et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 041405(2018).

    [90] Zhong C L. Investigations on high deposition-rate laser metal deposition for additive manufacturing application based on Inconel 718 Changchun:Changchun Institute of Optics, Fine Mechanics and Physics,[D]. Chinese Academy of Sciences(2015).

    [91] Zhong C L, Fu J B, Ding Y L et al. Porosity control of Inconel 718 in high deposition-rate laser metal deposition[J]. Optics and Precision Engineering, 23, 3005-3011(2015).

    [92] Leuders S, Thöne M, Riemer A et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 48, 300-307(2013). http://www.sciencedirect.com/science/article/pii/S014211231200343X

    [93] Li L J. Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping[J]. Journal of Materials Science, 41, 7886-7893(2006). http://link.springer.com/article/10.1007/s10853-006-0948-0

    [94] Li S, Li C G, Zhang Q S et al. Research status and prospect of additive manufacturing in laser by aluminum alloy[J]. Light Industry Machinery, 35, 98-101(2017).

    [95] Yuan X B, Wei Q S, Wen S F et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 43, 91-94(2014).

    [96] Gerling R, Leitgeb R, Schimansky F P. Porosity and argon concentration in gas atomized γ-TiAl powder and hot isostatically pressed compacts[J]. Materials Science and Engineering: A, 252, 239-247(1998). http://www.sciencedirect.com/science/article/pii/S092150939800656X

    Yansheng Yao, Jun Wang, Qingbo Chen, Chen Ding, Jianping Tang, Zhangsen Ge. Research Status of Defects and Defect Treatment Technology for Laser Additive Manufactured Products[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100004
    Download Citation