• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1730002 (2021)
Weihao Zhao1、2, MeiRong Dong1、2、*, Shishi Li1、2, Gangfu Rao1、2, and Jidong Lu1、2
Author Affiliations
  • 1College of Electric Power, South China University of Technology, Guangzhou , Guangdong 510640, China
  • 2Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou , Guangdong 510640, China
  • show less
    DOI: 10.3788/LOP202158.1730002 Cite this Article Set citation alerts
    Weihao Zhao, MeiRong Dong, Shishi Li, Gangfu Rao, Jidong Lu. Study on Releasing Characteristics of Solid Fuel Pyrolysis Volatilization Based on LIBS[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1730002 Copy Citation Text show less
    References

    [1] Petroleum British[M]. Statistical review of world energy(2020).

    [2] Yan R, Yang H P, Chin T et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes[J]. Combustion and Flame, 142, 24-32(2005).

    [3] Liu Q, Wang S R, Zheng Y et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 82, 170-177(2008).

    [4] Yang H P, Yan R, Chen H P et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 86, 1781-1788(2007).

    [5] Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 78, 265-271(2007).

    [6] Zhao C X, Jiang E C, Chen A H. Volatile production from pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of the Energy Institute, 90, 902-913(2017).

    [7] Liu Y D, Gao X, Cheng M J et al. Detection of anthracnose in camellia oleifera based on laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 57, 093006(2020).

    [8] Huang J, Lu J Q, Yang H et al. Quantitative analysis on coal calorific value using nanosecond, femtosecond, and dual-pulse laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 56, 193002(2019).

    [9] Xu X J, Wang X S, Li A Z et al. Fast classification of tea varieties based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 46, 0311003(2019).

    [10] Sha W, Li J T, Lu C P. Quantitative analysis of Mn in soil based on laser-induced breakdown spectroscopy optimization[J]. Chinese Journal of Lasers, 47, 0511001(2020).

    [11] Bak M S, Im S K, Mungal M G et al. Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas[J]. Combustion and Flame, 160, 2396-2403(2013).

    [12] Couris S, Kotzagianni M, Baskevicius A et al. Combustion diagnostics with femtosecond laser radiation[J]. Journal of Physics: Conference Series, 548, 012056(2014).

    [13] Fatehi H, He Y, Wang Z et al. LIBS measurements and numerical studies of potassium release during biomass gasification[J]. Proceedings of the Combustion Institute, 35, 2389-2396(2015).

    [14] He Y, Zhu J J, Li B et al. In-situ measurement of sodium and potassium release during oxy-fuel combustion of lignite using laser-induced breakdown spectroscopy: effects of O2 and CO2 concentration[J]. Energy & Fuels, 27, 1123-1130(2013).

    [15] He Y, Whiddon R, Wang Z H et al. Inhibition of sodium release from Zhundong coal via the addition of mineral additives: online combustion measurement with laser-induced breakdown spectroscopy (LIBS)[J]. Energy & Fuels, 31, 1082-1090(2017).

    [16] Liu Y Z, He Y, Wang Z H et al. Multi-point LIBS measurement and kinetics modeling of sodium release from a burning Zhundong coal particle[J]. Combustion and Flame, 189, 77-86(2018).

    [17] Liu Y Z, He Y, Wang Z H et al. Characteristics of alkali species release from a burning coal/biomass blend[J]. Applied Energy, 215, 523-531(2018).

    [18] Zhang Z H, Song Q, Yao Q. Influence of flame atomic absorption on measurement of K using laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 35, 917-921(2014).

    [19] Li S S, Dong M R, Luo F S et al. Experimental investigation of combustion characteristics and NOx formation of coal particles using laser induced breakdown spectroscopy[J]. Journal of the Energy Institute, 93, 52-61(2020).

    [20] Yuan S. Rapid pyrolysis of coal, biomass, and coal/biomass blends, and nitrogen evolution during rapid pyrolysis[D], 31-47(2012).

    [21] Solomon P R, Colket M B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel, 57, 749-755(1978).

    [22] Ledesma E B, Li C Z, Nelson P F et al. Release of HCN, NH3, and HNCO from the thermal gas-phase cracking of coal pyrolysis tars[J]. Energy & Fuels, 12, 536-541(1998).

    [23] Li C Z, Buckley A N, Nelson P F. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions[J]. Fuel, 77, 157-164(1998).

    [24] Xiong W M, Chen J Z, Wu D P et al. Progresses on analysis and characterization of organic compounds in bio-oil[J]. Journal of Instrumental Analysis, 32, 1024-1030(2013).

    [25] Hu Y M. Pyrolysis process and thermodynamic characteristics of lignocellulosic biomass components[D], 21-41(2013).

    [26] Lang T, Jensen A D, Jensen P A. Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen[J]. Energy & Fuels, 19, 1631-1643(2005).

    Weihao Zhao, MeiRong Dong, Shishi Li, Gangfu Rao, Jidong Lu. Study on Releasing Characteristics of Solid Fuel Pyrolysis Volatilization Based on LIBS[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1730002
    Download Citation