• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111415 (2020)
Bin Zhang, Ziqi Li, Lei Wang, and Feng Chen*
Author Affiliations
  • School of Physics, Shandong University, State Key Laboratory of Crystal Materials, Jinan, Shandong 250100, China
  • show less
    DOI: 10.3788/LOP57.111415 Cite this Article Set citation alerts
    Bin Zhang, Ziqi Li, Lei Wang, Feng Chen. Research Advances in Laser Crystal Optical Waveguides Fabricated by Femtosecond Laser Direct Writing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111415 Copy Citation Text show less
    References

    [1] Piromjitpong T, Dubov M, Boscolo S. High-repetition-rate femtosecond-laser inscription of low-loss thermally stable waveguides in lithium niobate[J]. Applied Physics A, 125, 302(2019).

    [2] Zhang B, Xiong B C, Li Z Q et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses[J]. Optical Materials, 86, 571-575(2018).

    [3] Wu R B, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 8, 910(2018).

    [4] Wang P, Qi J, Liu Z M et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 7, 41211(2017).

    [5] Li L Q, Nie W J, Li Z Q et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications[J]. Scientific Reports, 7, 7034(2017).

    [6] Lv J, Cheng Y Z, Lu Q M et al. Femtosecond laser written optical waveguides in z-cut MgO∶LiNbO3 crystal: fabrication and optical damage investigation[J]. Optical Materials, 57, 169-173(2016).

    [7] Nguyen H D, Ródenas A. Vázquez de Aldana J R, et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides[J]. Optics Express, 24, 7777-7791(2016).

    [8] Tejerina M R, Biasetti D A, Torchia G A. Polarization behaviour of femtosecond laser written waveguides in lithium niobate[J]. Optical Materials, 47, 34-38(2015).

    [9] Chen F. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [10] Romero C, García Ajates J, Chen F et al. Fabrication of tapered circular depressed-cladding waveguides in Nd∶YAG crystal by femtosecond-laser direct inscription[J]. Micromachines, 11, 10(2019).

    [11] Bérubé J P, Lapointe J, Dupont A et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 44, 37-40(2019).

    [12] Jia Y C, He R Y. Vázquez de Aldana J R, et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers[J]. Optics Express, 27, 30941-30951(2019).

    [13] Jia Y C. Vazquez de Aldana J R, Lu Q M, et al. Enhanced second harmonic generation in femtosecond laser inscribed double-cladding waveguide of Nd∶GdCOB crystal[J]. Journal of Lightwave Technology, 31, 3873-3878(2013).

    [14] Nie W J, He R Y, Cheng C et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing[J]. Optics Letters, 41, 2169-2172(2016).

    [15] De Michele V, Royon M, Marin E et al. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses[J]. Optical Materials Express, 9, 4624-4633(2019).

    [16] Bayer M M, Serpengüzel A et al. Femtosecond laser written diamond waveguide excitation of the whispering gallery modes in a silicon microsphere[J]. Optical Materials, 92, 418-424(2019).

    [17] Amorim V A, Maia J M, Viveiros D et al. Loss mechanisms of optical waveguides inscribed in fused silica by femtosecond laser direct writing[J]. Journal of Lightwave Technology, 37, 2240-2245(2019).

    [18] Chen G Y, Piantedosi F, Otten D et al. Femtosecond-laser-written microstructured waveguides in BK7 glass[J]. Scientific Reports, 8, 10377(2018).

    [19] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [20] Wu P F, Zhu S H, Hong M H et al. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd∶YAG crystal[J]. Optics & Laser Technology, 113, 11-14(2019).

    [21] Liu H L, Jia Y C, Chen F et al. Continuous wave laser operation in Nd∶GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses[J]. Optical Materials Express, 3, 278-283(2013).

    [22] Martínez de Mendívil J, Hoyo J, Solís J et al. Channel waveguide fabrication in KY(WO4)2 combining liquid-phase-epitaxy and beam-multiplexed femtosecond laser writing[J]. Optical Materials, 47, 304-309(2015).

    [23] Ren Y Y, Dong N N. MacDonald J, et al. Continuous wave channel waveguide lasers in Nd∶LuVO4 fabricated by direct femtosecond laser writing[J]. Optics Express, 20, 1969-1974(2012).

    [24] Dong N N. Martínez de Mendivil J, Cantelar E, et al. Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides[J]. Applied Physics Letters, 98, 181103(2011).

    [25] Ren Y Y, Chen F. Vázquez de Aldana J R. Near-infrared lasers and self-frequency-doubling in Nd∶YCOB cladding waveguides[J]. Optics Express, 21, 11562-11567(2013).

    [26] Salamu G, Jipa F, Zamfirescu M et al. Laser emission from diode-pumped Nd∶YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique[J]. Optics Express, 22, 5177-5182(2014).

    [27] Salamu G, Jipa F, Zamfirescu M et al. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Optical Materials Express, 4, 790-797(2014).

    [28] Tan Y, Luan Q F, Liu F Q et al. Q-switched pulse laser generation from double-cladding Nd∶YAG ceramics waveguides[J]. Optics Express, 21, 18963-18968(2013).

    [29] Jia Y C. Vázquez de Aldana J R, Chen F. Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb∶YAG ceramics[J]. Optical Materials Express, 3, 645-650(2013).

    [30] Jia Y C. Vázquez de Aldana J R, Akhmadaliev S, et al. Femtosecond laser micromachined ridge waveguide lasers in Nd∶YAG ceramics[J]. Optical Materials, 36, 228-231(2013).

    [31] Liu H L, Jia Y C. Vázquez de Aldana J R, et al. Femtosecond laser inscribed cladding waveguides in Nd∶YAG ceramics: fabrication, fluorescence imaging and laser performance[J]. Optics Express, 20, 18620-18629(2012).

    [32] Castillo-Vega G R, Penilla E H, Camacho-López S et al. Waveguide-like structures written in transparent polycrystalline ceramics with an ultra-low fluence femtosecond laser[J]. Optical Materials Express, 2, 1416-1424(2012).

    [33] Dong N N, Yao Y C, Chen F et al. Channel waveguides preserving luminescence features in Nd 3+∶Y2O3 ceramics produced by ultrafast laser inscription[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 5, 184-186(2011).

    [34] Calmano T, Paschke A G, Siebenmorgen J et al. Characterization of an Yb∶YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique[J]. Applied Physics B, 103, 1-4(2011).

    [35] Benayas A, Silva W F, Ródenas A et al. Ultrafast laser writing of optical waveguides in ceramic Yb∶YAG∶a study of thermal and non-thermal regimes[J]. Applied Physics A, 104, 301-309(2011).

    [36] Benayas A, Silva W F, Jacinto C et al. Thermally resistant waveguides fabricated in Nd∶YAG ceramics by crossing femtosecond damage filaments[J]. Optics Letters, 35, 330-332(2010).

    [37] Ródenas A, Torchia G A, Lifante G et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd∶YAG waveguides: micro-spectroscopy experiments and beam propagation calculations[J]. Applied Physics B, 95, 85-96(2009).

    [38] Torchia G A, Rodenas A, Benayas A et al. Highly efficient laser action in femtosecond-written Nd∶yttrium aluminum garnet ceramic waveguides[J]. Applied Physics Letters, 92, 111103(2008).

    [39] Torchia G A, Meilán P F, Rodenas A et al. Femtosecond laser written surface waveguides fabricated in Nd∶YAG ceramics[J]. Optics Express, 15, 13266-13271(2007).

    [40] Li S L. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters[J]. Optical Engineering, 57, 117103(2018).

    [41] Ajates J G. Vázquez de Aldana J R, Chen F, et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides[J]. Optical Materials Express, 8, 1890-1901(2018).

    [42] Lv J, Cheng Y Z. Vazquez de Aldana J R, et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal[J]. Journal of Lightwave Technology, 34, 3587-3591(2016).

    [43] Lv J, Cheng Y Z, Yuan W H et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal[J]. Optical Materials Express, 5, 1274-1280(2015).

    [44] Ren Y Y, Zhang L M, Xing H G et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti∶Sapphire crystal[J]. Optics & Laser Technology, 103, 82-88(2018).

    [45] Jia Y C, Cheng C. Vazquez de Aldana J R, et al. Three-dimensional waveguide splitters inscribed in Nd∶YAG by femtosecond laser writing: realization and laser emission[J]. Journal of Lightwave Technology, 34, 1328-1332(2016).

    [46] Calmano T, Kränkel C, Huber G. Laser oscillation in Yb∶YAG waveguide beam-splitters with variable splitting ratio[J]. Optics Letters, 40, 1753-1756(2015).

    [47] Huang Z C, Tu C H, Zhang S G et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses[J]. Optics Letters, 35, 877-879(2010).

    [48] Jia Y C, Chen F. Vázquez de Aldana J R, et al. Femtosecond laser micromachining of Nd∶GdCOB ridge waveguides for second harmonic generation[J]. Optical Materials, 34, 1913-1916(2012).

    [49] Presti D A, Guarepi V, Videla F et al. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing[J]. Optics and Lasers in Engineering, 111, 222-226(2018).

    [50] Kroesen S, Horn W, Imbrock J et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing[J]. Optics Express, 22, 23339-23348(2014).

    [51] Horn W, Kroesen S, Herrmann J et al. Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing[J]. Optics Express, 20, 26922-26928(2012).

    [52] Liao Y. Fabrication of a Y-splitter modulator embedded in LiNbO3 with a femtosecond laser[J]. Journal of Laser Micro, 5, 25-27(2010).

    [53] Liao Y, Xu J, Cheng Y et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser[J]. Optics Letters, 33, 2281-2283(2008).

    [54] Apostolopoulos V, Laversenne L, Colomb T et al. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti 3+: Sapphire[J]. Applied Physics Letters, 85, 1122-1124(2004).

    [55] Wu P F, He S, Liu H L. Annular waveguide lasers at 1064 nm in Nd∶YAG crystal produced by femtosecond laser inscription[J]. Applied Optics, 57, 5420-5424(2018).

    [56] Salamu G, Pavel N. Passive Q-switching by Cr 4+∶YAG saturable absorber of buried depressed-cladding waveguides obtained in Nd-doped media by femtosecond laser beam writing[J]. Materials, 11, 1689(2018).

    [57] Calmano T, Ams M, Dekker P et al. Hybrid single longitudinal mode Yb∶YAG waveguide laser with 16 W output power[J]. Optical Materials Express, 7, 2777-2782(2017).

    [58] Li Z Q, Zhang Y X, Cheng C et al. 65 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers[J]. Optics Express, 26, 11321-11330(2018).

    [59] Nie W J, Li R, Cheng C et al. Room-temperature subnanosecond waveguide lasers in Nd∶YVO4Q-switched by phase-change VO2: a comparison with 2D materials[J]. Scientific Reports, 7, 46162(2017).

    [60] Salamu G, Pavel N. Power scaling from buried depressed-cladding waveguides realized in Nd∶YVO4 by femtosecond-laser beam writing[J]. Optics & Laser Technology, 84, 149-154(2016).

    [61] He R Y. Vázquez de Aldana J R, Chen F. Passively Q-switched Nd∶YVO4 waveguide laser using graphene as a saturable absorber[J]. Optical Materials, 46, 414-417(2015).

    [62] Rodenas A, Benayas A. MacDonald J R, et al. Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG[J]. Optics Letters, 36, 3395-3397(2011).

    [63] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing[J]. Optics Express, 19, 17820-17833(2011).

    [64] MacDonald J R, Thomson R R, Beecher S J et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe[J]. Optics Letters, 35, 4036-4038(2010).

    [65] Jia Y C, Chen F. Advances in dielectric crystal waveguides produced by direct femtosecond laser writing[J]. Laser & Optoelectronics Progress, 53, 010001(2016).

    [66] Bazzan M, Sada C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2, 040603(2015).

    [67] Jornod N, Wittwer V J, Kränkel C et al. High-power amplification of a femtosecond vertical external-cavity surface-emitting laser in an Yb∶YAG waveguide[J]. Optics Express, 25, 16527-16533(2017).

    [68] Hakobyan S, Wittwer V J, Hasse K et al. Highly efficient Q-switched Yb∶YAG channel waveguide laser with 56 W of average output power[J]. Optics Letters, 41, 4715-4718(2016).

    [69] Castillo G R, Romero C, Lifante G et al. Stress-induced waveguides in Nd∶YAG by simultaneous double-beam irradiation with femtosecond pulses[J]. Optical Materials, 51, 84-88(2016).

    [70] Liu S, Liu X, Tang W L et al. Study of Ti∶sapphire double line waveguide written by femtosecond laser[J]. Chinese Journal of Lasers, 42, 0203001(2015).

    [71] Grivas C, Corbari C, Brambilla G et al. Tunable, continuous-wave Ti∶sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses[J]. Optics Letters, 37, 4630-4632(2012).

    [72] Tan Y, Yao Y C. MacDonald J R, et al. Self-Q-switched waveguide laser based on femtosecond laser inscribed Nd∶Cr∶YVO4 crystal[J]. Optics Letters, 39, 5289-5292(2014).

    [73] Li S L, Deng F M, Huang Z P. Femtosecond laser inscription waveguides in Nd∶GdVO4 crystal[J]. Optical Engineering, 55, 107104(2016).

    [74] Zhang C, Dong N N, Yang J et al. Channel waveguide lasers in Nd∶GGG crystals fabricated by femtosecond laser inscription[J]. Optics Express, 19, 12503-12508(2011).

    [75] Li S L, Huang Z P, Ye Y K et al. Femtosecond laser inscribed cladding waveguide lasers in Nd∶LiYF4 crystals[J]. Optics & Laser Technology, 102, 247-253(2018).

    [76] Liu H L, Luo S Y, Xu B et al. Femtosecond-laser micromachined Pr∶YLF depressed cladding waveguide: Raman, fluorescence, and laser performance[J]. Optical Materials Express, 7, 3990-3997(2017).

    [77] Li R, Nie W J, Lu Q M et al. Femtosecond-laser-written superficial cladding waveguides in Nd∶CaF2 crystal[J]. Optics & Laser Technology, 92, 163-167(2017).

    [78] Castillo G R, Labrador-Paez L, Chen F et al. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses[J]. Journal of Lightwave Technology, 35, 2520-2525(2017).

    [79] Ajates J G, Romero C, Castillo G R et al. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd∶YAG crystal: a route to integrate complex photonic circuits in crystals[J]. Optical Materials, 72, 220-225(2017).

    [80] Salamu G, Jipa F, Zamfirescu M et al. Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd∶YAG by direct femtosecond-laser writing[J]. IEEE Photonics Journal, 8, 1500209(2016).

    [81] Tang W L, Zhang W F, Liu X et al. Tubular depressed cladding waveguide laser realized in Yb∶YAG by direct inscription of femtosecond laser[J]. Journal of Optics, 17, 105803(2015).

    [82] Pavel N, Salamu G, Jipa F et al. Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd∶YVO4 by the direct femtosecond-laser writing technique[J]. Optics Express, 22, 23057-23065(2014).

    [83] Liu H L, Aguiló M et al. Femtosecond laser-written double-cladding waveguides in Nd∶GdVO4 crystal: Raman analysis, guidance, and lasing[J]. Optical Engineering, 53, 097105(2014).

    [84] Liu H L, Chen F. Vázquez de Aldana J R, et al. Femtosecond-laser inscribed double-cladding waveguides in Nd∶YAG crystal: a promising prototype for integrated lasers[J]. Optics Letters, 38, 3294-3297(2013).

    [85] Jia Y C, Cheng C. Vázquez de Aldana J R, et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes[J]. Scientific Reports, 4, 5988(2015).

    [86] Ren Y Y, Zhang L M, Lv J et al. Optical-lattice-like waveguide structures in Ti∶Sapphire by femtosecond laser inscription for beam splitting[J]. Optical Materials Express, 7, 1942-1949(2017).

    [87] Kifle E, Loiko P, Mateos X et al. Femtosecond-laser-written hexagonal cladding waveguide in Tm∶KLu(WO4)2: Raman study and laser operation[J]. Optical Materials Express, 7, 4258-4268(2017).

    [88] Jiang H L, Li Z Q, Dong X J et al. WS2-based Q-switched laser generation from Nd∶YAG ridge waveguides fabricated by combination of swift heavy ion irradiation and laser ablation[J]. Optical Materials, 92, 163-166(2019).

    [89] Cheng Y Z, Lv J, Akhmadaliev S et al. Optical ridge waveguides in Nd∶LGS crystal produced by combination of swift C 5+ ion irradiation and precise diamond blade dicing[J]. Optics & Laser Technology, 81, 122-126(2016).

    [90] Cheng Y Z, Lv J, Akhmadaliev S et al. Optical ridge waveguides in Yb∶YAG laser crystal produced by combination of swift carbon ion irradiation and femtosecond laser ablation[J]. Optics & Laser Technology, 72, 100-103(2015).

    [91] Jia Y C, Tan Y, Cheng C et al. Efficient lasing in continuous wave and graphene Q-switched regimes from Nd∶YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation[J]. Optics Express, 22, 12900-12908(2014).

    [92] Jia Y C, Dong N N, Chen F et al. Ridge waveguide lasers in Nd∶GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation[J]. Optics Express, 20, 9763-9768(2012).

    [93] Jia Y C, Dong N N, Chen F et al. Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd∶YAG single crystals[J]. Optical Materials Express, 2, 657-662(2012).

    [94] Feng T, Sahoo P K. Arteaga-Sierra F R, et al. Pulse-propagation modeling and experiment for femtosecond-laser writing of waveguide in Nd∶YAG[J]. Crystals, 9, 434(2019).

    [95] Tang W L, Song Q G, Xu Q A et al. Study on writing of double line waveguide in Yb∶YAG with ultrafast laser[J]. Acta Optica Sinica, 34, 1232002(2014).

    [96] Li S L, Ye Y K, Wang M W. Femtosecond laser written channel optical waveguide in Nd∶YAG crystal[J]. Optics & Laser Technology, 58, 89-93(2014).

    [97] Pavel N, Salamu G, Voicu F et al. Efficient laser emission in diode-pumped Nd∶YAG buried waveguides realized by direct femtosecond-laser writing[J]. Laser Physics Letters, 10, 095802(2013).

    [98] Calmano T, Siebenmorgen J, Paschke A G et al. Diode pumped high power operation of a femtosecond laser inscribed Yb∶YAG waveguide laser[Invited][J]. Optical Materials Express, 1, 428-433(2011).

    [99] Calmano T, Siebenmorgen J, Hellmig O et al. Nd∶YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing[J]. Applied Physics B, 100, 131-135(2010).

    [100] Ponarina M V, Okhrimchuk A G, Rybin M G et al. Dual-wavelength generation of picosecond pulses with 9.8 GHz repetition rate in Nd∶YAG waveguide laser with graphene[J]. Quantum Electronics, 49, 365-370(2019).

    [101] Li Z Q, Li R, Pang C et al. 88 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 27, 8727-8737(2019).

    [102] McDaniel S, Thorburn F, Lancaster A et al. Operation of Ho∶YAG ultrafast laser inscribed waveguide lasers[J]. Applied Optics, 56, 3251-3256(2017).

    [103] Liu H L. Vazquez de Aldana J R, Hong M H, et al. Femtosecond laser inscribed Y-branch waveguide in Nd∶YAG crystal: fabrication and continuous-wave lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 227-230(2016).

    [104] Cheng C, Liu H L, Shang Z et al. Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing[J]. Optical Materials Express, 6, 367-373(2016).

    [105] Okhrimchuk A G, Obraztsov P A. 11-GHz waveguide Nd∶YAG laser CW mode-locked with single-layer graphene[J]. Scientific Reports, 5, 11172(2015).

    [106] Liu H L, Cheng C, Romero C et al. Graphene-based Y-branch laser in femtosecond laser written Nd∶YAG waveguides[J]. Optics Express, 23, 9730-9735(2015).

    [107] Okhrimchuk A, Mezentsev V, Shestakov A et al. Low loss depressed cladding waveguide inscribed in YAG∶Nd single crystal by femtosecond laser pulses[J]. Optics Express, 20, 3832-3843(2012).

    [108] An Q, Ren Y Y, Jia Y C et al. Mid-infrared waveguides in zinc sulfide crystal[J]. Optical Materials Express, 3, 466-471(2013).

    [109] Ren Y Y, Cheng C, Jia Y C et al. Switchable single-dual-wavelength Yb, Na∶CaF2 waveguide lasers operating in continuous-wave and pulsed regimes[J]. Optical Materials Express, 8, 1633-1641(2018).

    [110] Calmano T, Siebenmorgen J, Reichert F et al. Crystalline Pr∶SrAl12O19 waveguide laser in the visible spectral region[J]. Optics Letters, 36, 4620-4622(2011).

    [111] Grivas C, Ismaeel R, Corbari C et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti∶sapphire waveguides[J]. Laser & Photonics Reviews, 12, 1800167(2018).

    [112] Ren Y Y, Jiao Y. Vázquez de Aldana J R, et al. Ti∶Sapphire micro-structures by femtosecond laser inscription: guiding and luminescence properties[J]. Optical Materials, 58, 61-66(2016).

    [113] Ren Y Y. Vázquez de Aldana J R, Chen F, et al. Channel waveguide lasers in Nd∶LGS crystals[J]. Optics Express, 21, 6503-6508(2013).

    [114] Biasetti D A, di Liscia E J, Torchia G A. Optical waveguides fabricated in Cr∶LiSAF by femtosecond laser micromachining[J]. Optical Materials, 73, 25-32(2017).

    [115] Silva W F, Jacinto C, Benayas A et al. Femtosecond-laser-written, stress-induced Nd∶YVO4 waveguides preserving fluorescence and Raman gain[J]. Optics Letters, 35, 916-918(2010).

    [116] Tan Y, Jia Y C, Chen F et al. Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd∶YVO4 channel waveguides[J]. Journal of the Optical Society of America B, 28, 1607-1610(2011).

    [117] Li Z Q, Cheng C, Dong N N et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 5, 406-410(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170815000103Zv2y5B

    [118] Jia Y C, Chen F. Vázquez de Aldana J R. Efficient continuous-wave laser operation at 1064 nm in Nd∶YVO4 cladding waveguides produced by femtosecond laser inscription[J]. Optics Express, 20, 16801-16806(2012).

    [119] Liu H L, Tan Y. Vázquez de Aldana J R, et al. Efficient laser emission from cladding waveguide inscribed in Nd∶GdVO4 crystal by direct femtosecond laser writing[J]. Optics Letters, 39, 4553-4556(2014).

    [120] Tan Y, Rodenas A, Chen F et al. 70% slope efficiency from an ultrafast laser-written Nd∶GdVO4 channel waveguide laser[J]. Optics Express, 18, 24994-24999(2010).

    [121] Minnegaliev M M, Dyakonov I V, Gerasimov K I et al. Observation and investigation of narrow optical transitions of 167Er 3+ions in femtosecond laser printed waveguides in 7LiYF4 crystal[J]. Laser Physics Letters, 15, 045207(2018).

    [122] Müller S, Calmano T, Metz P et al. Femtosecond-laser-written diode-pumped Pr∶LiYF4 waveguide laser[J]. Optics Letters, 37, 5223-5225(2012).

    [123] Nie W J, Cheng C, Jia Y C et al. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd∶YAP crystal by direct femtosecond laser writing[J]. Optics Letters, 40, 2437-2440(2015).

    [124] Liu H L, An Q, Chen F et al. Continuous-wave lasing at 1. 06 μm in femtosecond laser written Nd∶KGW waveguides[J]. Optical Materials, 37, 93-96(2014).

    [125] Kifle E, Mateos X. Rodriguez Vazquez de Aldana J, et al. Femtosecond-laser-written Tm∶KLu(WO4)2 waveguide lasers[J]. Optics Letters, 42, 1169-1172(2017).

    [126] Kifle E, Loiko P, Romero C et al. Femtosecond-laser-written Ho∶KGd(WO4)2 waveguide laser at 2.1 μm[J]. Optics Letters, 44, 1738-1741(2019).

    [127] Skryabin N, Kalinkin A, Dyakonov I et al. Femtosecond laser written depressed-cladding waveguide 2×2, 1×2 and 3×3 directional couplers in Tm 3+∶YAG crystal[J]. Micromachines, 11, 1(2019).

    [128] Liu X Y, Qu S L, Tan Y et al. Evanescent coupling in buried planar waveguide arrays written by a femtosecond laser in neodymium-doped yttrium lithium fluoride (Nd∶YLiF4)[J]. Journal of Physics D: Applied Physics, 44, 495101(2011).

    [129] Liu H L, Yao Y C, Wu P F et al. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays[J]. Optical Materials Express, 9, 4447-4455(2019).

    [130] Leburn C G. Ramírez-Corral C Y, Thomson I J, et al. Femtosecond pulses at 50-W average power from an Yb∶YAG planar waveguide amplifier seeded by an Yb∶KYW oscillator[J]. Optics Express, 20, 17367-17373(2012).

    [131] Ródenas A, Gu M, Corrielli G et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 13, 105-109(2019).

    [132] Xu T X, Switkowski K, Chen X et al. Three-dimensional nonlinear photonic crystal in ferroelectric Barium calcium titanate[J]. Nature Photonics, 12, 591-595(2018).

    [133] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).

    [134] Liu S, Switkowski K, Xu C L et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nature Communications, 10, 3208(2019).

    [135] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).

    [136] Imbrock J, Wesemann L, Kroesen S et al. Waveguide-integrated three-dimensional quasi-phase-matching structures[J]. Optica, 7, 28-34(2020).

    Bin Zhang, Ziqi Li, Lei Wang, Feng Chen. Research Advances in Laser Crystal Optical Waveguides Fabricated by Femtosecond Laser Direct Writing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111415
    Download Citation