• Acta Optica Sinica
  • Vol. 40, Issue 14, 1431001 (2020)
Ying Wu1, Ertao Hu1、*, Jing Wang2, and Wei Wei1
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China;
  • 2Department of Basic Education, Tongda College, Nanjing University of Posts and Telecommunications, Yangzhou, Jiangsu 225127, China
  • show less
    DOI: 10.3788/AOS202040.1431001 Cite this Article Set citation alerts
    Ying Wu, Ertao Hu, Jing Wang, Wei Wei. Design and Optimization of Multilayered Metal/Dielectric Film Structure for Solar Photothermal Conversion[J]. Acta Optica Sinica, 2020, 40(14): 1431001 Copy Citation Text show less
    References

    [1] Wang X Y, Gao J H, Hu H B et al. High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity[J]. Nano Energy, 37, 232-241(2017).

    [2] Hu E T, Guo S, Gu T et al. High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure[J]. Vacuum, 146, 194-199(2017).

    [3] Bermel P, Lee J, Joannopoulos J D et al. Selective solar absorbers[M]. ∥ Chen G, Prasad V, Jaluria V, et al. Annual review of heat transfer. New York: Begell House, 231-254(2012).

    [4] Zhou L, Tan Y L, Wang J Y et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 10, 393-398(2016).

    [5] Wang H, Alshehri H, Su H et al. Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air[J]. Solar Energy Materials and Solar Cells, 174, 445-452(2018).

    [6] Fu X H, Guo K, Zhang J et al. Strong absorption film of metal-dielectric interference of solar spectrum[J]. Chinese Journal of Lasers, 44, 0803002(2017).

    [7] Meng J P, Liu X P, Fu Z Q et al. Optical design of Cu/Zr0.2AlN0.8/ZrN/AlN/ZrN/AlN/Al34O62N4 solar selective absorbing coatings[J]. Solar Energy, 146, 430-435(2017).

    [8] Zhou W X, Shen Y, Hu E T et al. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability[J]. Optics Express, 20, 28953-28962(2012).

    [9] Sergeant N P, Pincon O, Agrawal M et al. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks[J]. Optics Express, 17, 22800-22812(2009).

    [10] Wu Y W, Zheng W F, Lin L M et al. Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure[J]. Solar Energy Materials and Solar Cells, 115, 145-150(2013).

    [11] Chen F L, Wang S W, Liu X X et al. Colorful solar selective absorber integrated with different colored units[J]. Optics Express, 24, A92-A103(2016).

    [12] Li X F, Chen Y R, Miao J et al. High solar absorption of a multilayered thin film structure[J]. Optics Express, 15, 1907-1912(2007).

    [13] Rodríguez-Palomo A, Céspedes E, Hernández-Pinilla D et al. High-temperature air-stable solar selective coating based on MoSi2-Si3N4 composite[J]. Solar Energy Materials and Solar Cells, 174, 50-55(2018).

    [14] Thomas N H, Chen Z, Fan S H et al. Semiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversion[J]. Scientific Reports, 7, 5362(2017).

    [15] Chester D, Bermel P, Joannopoulos J D et al. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets[J]. Optics Express, 19, A245-A257(2011).

    [16] Du M, Hao L, Mi J et al. Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications[J]. Solar Energy Materials & Solar Cells, 95, 1193-1196(2011).

    [17] Wu Y X, Wang C, Sun Y et al. Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings[J]. Solar Energy Materials and Solar Cells, 134, 373-380(2015).

    [18] Gremion C, Seassal C, Drouard E et al. Design, properties and degradation mechanisms of Pt-Al2O3 multilayer coating for high temperature solar thermal applications[J]. Surface and Coatings Technology, 284, 31-37(2015).

    [19] Sakurai A, Tanikawa H, Yamada M. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 132, 80-89(2014).

    [20] Yang C Y, Ji C G, Shen W D et al. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption[J]. ACS Photonics, 3, 590-596(2016).

    [21] Zhang K, Hao L, Du M et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings[J]. Renewable and Sustainable Energy Reviews, 67, 1282-1299(2017).

    [22] MacLeod H A, MacLeod H A[M]. Thin-film optical filters(2010).

    [23] Palik E D[M]. Handbook of optical constant of solids(1998).

    [24] Skowronski L, Szczesny R, Zdunek K. Optical and microstructural characterization of amorphous-like Al2O3, SnO2 and TiO2 thin layers deposited using a pulse gas injection magnetron sputtering technique[J]. Thin Solid Films, 632, 112-118(2017).

    [25] Guo S, Wu Y, Gu T et al. Preparation and characterization of solar-selective absorbers based on multilayered W/SiO2 thin films[J]. Acta Optica Sinica, 39, 0531001(2019).

    [26] Liu M H, Hu E T, Yao Y et al. High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250-1200 nm wavelength region[J]. Optics Express, 22, A1843-A1852(2014).

    [27] Ning Y P, Wang W W, Wang L et al. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating[J]. Solar Energy Materials and Solar Cells, 167, 178-183(2017).

    [28] Chipperfield A J, Fleming P J. The MATLAB genetic algorithm toolbox. [C]∥IEE Colloquium on Applied Control Techniques Using MATLAB, January 26-26, 1995, London, UK. London: IET, 4917683(1995).

    Ying Wu, Ertao Hu, Jing Wang, Wei Wei. Design and Optimization of Multilayered Metal/Dielectric Film Structure for Solar Photothermal Conversion[J]. Acta Optica Sinica, 2020, 40(14): 1431001
    Download Citation