• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 5, 1730001 (2017)
Xuecen Wang1, Jiahao Wang1, Xinpei Zhu1, Yao Zheng2, Ke Si1、2, and Wei Gong1、*
Author Affiliations
  • 1Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, and the Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
  • show less
    DOI: 10.1142/s1793545817300014 Cite this Article
    Xuecen Wang, Jiahao Wang, Xinpei Zhu, Yao Zheng, Ke Si, Wei Gong. Super-resolution microscopy and its applications in neuroscience[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730001 Copy Citation Text show less
    References

    [1] E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510-512 (1972).

    [2] E. Betzig, J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257 :189-95 (1992).

    [3] B. Bailey, D. L. Farkas, D. L. Taylor et al., “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44-48 (1993).

    [4] S. W. Hell, E. H. Stelzer, S. Lindek et al., “Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy,” Opt. Lett. 19, 222 (1994).

    [5] M. G. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195, 10-16 (1999).

    [6] S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994).

    [7] R. Heintzmann, T. M. Jovin, C. Cremer, “Saturated patterned excitation microscopy-a concept for optical resolution improvement.” J Opt Soc Am A Opt Image Sci Vis. 19 :1599-609 (2002).

    [8] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).

    [9] E. Betzig, G. H. Patterson, R. Sougrat et al., “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).

    [10] S. T. Hess, T. P. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258-4272 (2006).

    [11] M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).” Nat. Methods. 3, 793-795 (2006).

    [12] D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic. 2, 764-774 (2001).

    [13] S. M. Simon, “Partial internal reflections on total internal reflection fluorescent microscopy,” Trends. Cell. Biol. 19, 661-668 (2009).

    [14] D. Yarar, C. M. Waterman-Storer, S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell. 16, 964-975 (2005).

    [15] J. Z. Rappoport, “Focusing on clathrin-mediated endocytosis,” Biochem. J. 412, 415-423 (2008).

    [16] J. Z. Rappoport, S. M. Simon, “Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots,” J. Cell. Sci. 122, 1301-1305 (2009).

    [17] T. Yuan, L. Liu, Y. Zhang et al., “Diacylglycerol guides the hopping of clathrin-coated pits along microtubules for exo-endocytosis coupling,” Dev Cell. 35, 120-130 (2015).

    [18] J. Boulanger, C. Gueudry, D. Munch et al., “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. USA 111, 17164-171649 (2014).

    [19] D. Li, K. Herault, K. Zylbersztejn et al., “Astrocyte VAMP3 vesicles undergo Ca2+ -independent cycling and modulate glutamate transporter trafficking,” J. Physiol. 593, 2807-2832 (2015).

    [20] S. Saffarian, T. Kirchhausen, “Differential evanescence nanometry: Live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94, 2333-2342 (2008).

    [21] W. T. Pitkeathly, N. S. Poulter, E. Claridge et al., “Auto-align — multi-modality fluorescence microscopy image co-registration,” Traffic. 13, 204-217 (2012).

    [22] T. A. Klar, S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954-956 (1999).

    [23] T. Grotjohann, I. Testa, M. Leutenegger et al., “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204-208 (2011).

    [24] R. J. Marsh, S. Culley, A. J. Bain, “Low power super resolution fluorescence microscopy by lifetime modification and image reconstruction,” Opt. Express. 22, 12327-12338 (2014).

    [25] C. F. Kuang, S. Li, W. Liu et al., “Breaking the diffraction barrier using fluorescence emission difference microscopy.” Sci. Rep. 3, (2013).

    [26] W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photon. Rev. 10, 147-152 (2016).

    [27] X. Yang, H. Xie, E. Alonas et al., “Mirror-enhanced super-resolution microscopy,” Light Sci Appl. 5, (2016).

    [28] K. I. Willig, R. R. Kellner, R. Medda et al., “Nanoscale resolution in GFP-based microscopy,” Nat. Methods. 3, 721-723 (2006).

    [29] M. Ishigaki, M. Iketani, M. Sugaya et al., “STED super-resolution imaging of mitochondria labeled with TMRM in living cells,” Mitochondrion 28, 79-87 (2016).

    [30] D. C. Jans, C. A. Wurm, D. Riedel et al., “STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria,” Proc. Natl. Acad. Sci. USA 110, 8936-8941 (2013).

    [31] E. D’Este, D. Kamin, C. Velte et al., “Subcortical cytoskeleton periodicity throughout the nervous system,” Sci. Rep. 6, 22741 (2016).

    [32] E. D’Este, D. Kamin, F. Gottfert et al., “STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons,” Cell Rep. 10, 1246-1251 (2015).

    [33] H. Nishimune, Y. Badawi, S. Mori et al., “Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice,” Sci. Rep. 6, 27935 (2016).

    [34] F. Bottanelli, E. B. Kromann, E. S. Allgeyer et al., “Two-colour live-cell nanoscale imaging of intracellular targets.” Nat. Commun. 7, 10778 (2016).

    [35] L. Meyer, D. Wildanger, R. Medda et al., “Dual-color STED microscopy at 30-nm focal-plane resolution,” Small. 4, 1095-1100 (2008).

    [36] S. C. Sidenstein, E. D’Este, M. J. Bohm et al., “Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses,” Sci Rep. 6, 26725 (2016).

    [37] J. Buckers, D. Wildanger, G. Vicidomini et al., “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express. 19, 3130-3143 (2011).

    [38] D. Wildanger, R. Medda, L. Kastrup et al., “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236, 35-43 (2009).

    [39] Y. Wu, X. Wu, R. Lu et al., “Resonant scanning with large field of view reduces photobleaching and enhances fluorescence yield in STED microscopy,” Sci. Rep. 5, 14766 (2015).

    [40] D. Dan, M. Lei, B. Yao et al., “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).

    [41] E. H. Rego, L. Shao, J. J. Macklin et al., “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109, E135-E143 (2012).

    [42] D. Li, L. Shao, B. C. Chen et al., “Advanced Imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349, aab3500 (2015).

    [43] H. Gong, D. Xu, J. Yuan et al., “High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level,” Nat. Commun. 7, 12142 (2016).

    [44] C. Li, H. Yan, L. X. Zhao et al., “A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio,” Nat. Commun. 5, 5709 (2014).

    [45] D. Pan, Z. Hu, F. Qiu et al., “A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging,” Nat. Commun. 5, 5573 (2014).

    [46] B. Huang, W. Wang, M. Bates et al., “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810-813 (2008).

    [47] A. N. Boettiger, B. Bintu, J. R. Moffitt et al., “Super-resolution imaging reveals distinct chromatin folding for different epigenetic states,” Nature 529, 418-422 (2016).

    [48] M. Lakadamyali, “Super-resolution microscopy: Going live and going fast,” Chemphyschem 15, 630-636 (2014).

    [49] Z. Liu, D. Xing, Q. P. Su et al., “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).

    [50] M. Bates, S. A. Jones, X. Zhuang, “Preparation of photoswitchable labeled antibodies for STORM imaging,” Cold Spring Harb Protoc. 2013, 540-541 (2013).

    [51] M. Bates, S. A. Jones, X. Zhuang, “Transfection of genetically encoded photoswitchable probes for STORM imaging,” Cold Spring Harb Protoc. 2013, 537-539 (2013).

    [52] L. Zhu, W. Zhang, D. Elnatan et al., “Faster STORM using compressed sensing,” Nat. Methods. 9, 721-723 (2012).

    [53] F. Mark, W. Barry, A. P. Michael, Neuroscience: Exploring the Brain, Nishimura Co. Ltd., Japan, pp. 144-152 (2007).

    [54] K. I. Willig, S. O. Rizzoli, V. Westphal et al., “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935-939 (2006).

    [55] J. J. Sieber, K. I. Willig, C. Kutzner et al., “Anatomy and dynamics of a supramolecular membrane protein cluster,” Science 317, 1072-1076 (2007).

    [56] V. Westphal, S. O. Rizzoli, M. A. Lauterbach et al., “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246-249 (2008).

    [57] S. Nofal, U. Becherer, D. Hof et al., “Primed vesicles can be distinguished from docked vesicles by analyzing their mobility,” J. Neurosci. 27, 1386-1395 (2007).

    [58] Y. Gu, R. L. Huganir, “Identification of the SNARE complex mediating the exocytosis of NMDA receptors,” Proc. Natl. Acad. Sci. USA 113, 12280-12285 (2016).

    [59] U. V. Nagerl, K. I. Willig, B. Hein et al., “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. USA 105, 18982-18987 (2008).

    [60] M. Schouten, G. M. De Luca, D. K. Alatriste Gonzalez et al., “Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy,” J. Vis. Exp. (2014).

    [61] G. Zhong, J. He, R. Zhou et al., “Developmental mechanism of the periodic membrane skeleton in axons,” Elife. 3, (2014).

    [62] K. Xu, G. Zhong, X. Zhuang, “Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons,” Science 339, 452-456 (2013).

    [63] K. Zhanghao, L. Chen, X. Yang et al., “Super-resolution dipole orientation mapping via polarization demodulation,” Nature 5, e16166 (2016).

    [64] K. Wang, D. E. Milkie, A. Saxena et al., “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods. 11, 625-628 (2014).

    [65] K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics. 6, 657-661 (2012).

    [66] N. Ji, D. E. Milkie, E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods. 7, 141-147 (2010).

    [67] K. Xu, H. P. Babcock, X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods. 9, 185-188 (2012).

    [68] J. H. Resau, Handbook of Biological Confocal Microscopy, Springer, US (2006).

    [69] P. Kner, B. B. Chhun, E. R. Griffis et al., “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods. 6, 339-342 (2009).

    [70] Y. Fu, P. W. Winter, R. Rojas et al., “Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching,” Proc. Natl. Acad. Sci. USA 113, 4368-4373 (2016).

    Xuecen Wang, Jiahao Wang, Xinpei Zhu, Yao Zheng, Ke Si, Wei Gong. Super-resolution microscopy and its applications in neuroscience[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730001
    Download Citation