• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0323003 (2022)
Junming Chen and Xiaojie Guo*
Author Affiliations
  • Institute of Photonics Technology, Jinan University, Guangzhou , Guangdong 511443, China
  • show less
    DOI: 10.3788/LOP202259.0323003 Cite this Article Set citation alerts
    Junming Chen, Xiaojie Guo. Widely Tunable Mid-Infrared Spectral Translation in Chalcogenide Waveguide with Normal Dispersion[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0323003 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [2] Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 6, 432-439(2012).

    [3] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).

    [4] Nie H K, Ning J, Zhang B T et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [5] Kuyken B, Liu X, Osgood R M et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides[J]. Optics Express, 19, 20172-20181(2011).

    [6] Gai X, Choi D Y, Madden S et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide[J]. Optics Letters, 37, 3870-3872(2012).

    [7] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [8] Hamamatsu. Characteristics and use of infrared detectors[EB/OL]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Related/20130810174714265.pdf

    [9] Liu X P, Kuyken B, Roelkens G et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation[J]. Nature Photonics, 6, 667-671(2012).

    [10] Huang Y, Tien E K, Gao S et al. Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides[J]. Applied Physics Letters, 99, 181122(2011).

    [11] Kowligy A S, Hickstein D D, Lind A et al. Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides[J]. Optics Letters, 43, 4220-4223(2018).

    [12] Guo Y H, Jafari Z, Xu L J et al. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics[J]. Photonics Research, 7, 1279-1286(2019).

    [13] Boggio J M C, Moro S, Kuo B P P et al. Tunable parametric all-fiber short-wavelength IR transmitter[J]. Journal of Lightwave Technology, 28, 443-447(2010).

    [14] Li J Y, Xu K, Du J B. Ultrabroadband and flattened dispersion in aluminum nitride slot waveguides[J]. IEEE Photonics Journal, 9, 1-8(2017).

    [15] Kuo B P P, Alic N, Wysocki P F et al. Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator[J]. Journal of Lightwave Technology, 29, 410-416(2011).

    [16] Marhic M E, Wong K K Y, Kazovsky L G. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1133-1141(2004).

    [17] Kuyken B, Verheyen P, Tannouri P et al. Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion[J]. Optics Letters, 39, 1349-1352(2014).

    [18] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 5, 141-148(2011).

    [19] Agrawal G[M]. Nonlinear fiber optics, 397-456(2013).

    [20] Dai S X, Chen F F, Xu Y S et al. Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system[J]. Optics Express, 23, 1300-1307(2015).

    [21] Al-Kadry A, Baker C, El Amraoui M et al. Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects[J]. Optics Letters, 38, 1185-1187(2013).

    [22] Dantanarayana H G, Abdel-Moneim N, Tang Z Q et al. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation[J]. Optical Materials Express, 4, 1444-1455(2014).

    [23] Karim M R, Rahman B M, Agrawal G P. Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide[J]. Optics Express, 23, 6903-6914(2015).

    [24] Godin T, Combes Y, Ahmad R et al. Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires[J]. Optics Letters, 39, 1885-1888(2014).

    [25] Alamgir I, St-Hilaire F, Rochette M. All-fiber nonlinear optical wavelength conversion system from the C-band to the mid-infrared[J]. Optics Letters, 45, 857-860(2020).

    Junming Chen, Xiaojie Guo. Widely Tunable Mid-Infrared Spectral Translation in Chalcogenide Waveguide with Normal Dispersion[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0323003
    Download Citation