• Opto-Electronic Engineering
  • Vol. 50, Issue 4, 220231 (2023)
Guanghui Liu*, Qi Yang, Yuebo Meng, Minhua Zhao, and Hua Yang
Author Affiliations
  • School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • show less
    DOI: 10.12086/oee.2023.220231 Cite this Article
    Guanghui Liu, Qi Yang, Yuebo Meng, Minhua Zhao, Hua Yang. A progressive fusion image enhancement method with parallel hybrid attention[J]. Opto-Electronic Engineering, 2023, 50(4): 220231 Copy Citation Text show less
    References

    [5] Zheng C J, Shi D M, Shi W T. Adaptive unfolding total variation network for low-light image enhancement[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 4419–4428.https://doi.org/10.1109/ICCV48922.2021.00440.

    [6] Tian Q C, Cohen D. Global and local contrast adaptive enhancement for non-uniform illumination color images[C]//2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2018: 3023–3030.https://doi.org/10.1109/ICCVW.2017.357.

    [20] Tu Z Z, Talebi H, Zhang H, et al. MAXIM: multi-axis MLP for image processing[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5759-5770.https://doi.org/10.1109/CVPR52688.2022.00568.

    [21] Liu R S, Ma L, Zhang J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10556–10565.https://doi.org/10.1109/CVPR46437.2021.01042.

    [22] Wu W H, Weng J, Zhang P P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5891–5900.https://doi.org/10.1109/CVPR52688.2022.00581.

    [23] Zamir S W, Arora A, Khan S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14816–14826.https://doi.org/10.1109/CVPR46437.2021.01458.

    [24] Kupyn O, Martyniuk T, Wu J R, et al. DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 8877–8886.https://doi.org/10.1109/ICCV.2019.00897.

    [28] Liang J, Zhang A R, Xu J, et al. Fusion-correction network for single-exposure correction and multi-exposure fusion[Z]. arXiv: 2203.03624, 2022.https://doi.org/10.48550/arXiv.2203.03624.

    [30] Singh K, Parihar A S. A comparative analysis of illumination estimation based Image Enhancement techniques[C]//2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 2020: 1–5.https://doi.org/10.1109/ic-ETITE47903.2020.195.

    [31] Agrawal A, Jadhav N, Gaur A, et al. Improving the accuracy of object detection in low light conditions using multiple Retinex theory-based image enhancement algorithms[C]//2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, 2022: 1–5.https://doi.org/10.1109/ICAECT54875.2022.9808011.

    Guanghui Liu, Qi Yang, Yuebo Meng, Minhua Zhao, Hua Yang. A progressive fusion image enhancement method with parallel hybrid attention[J]. Opto-Electronic Engineering, 2023, 50(4): 220231
    Download Citation