• Chinese Journal of Lasers
  • Vol. 51, Issue 6, 0601004 (2024)
Yuwei Nie1、2, Wei Li1、*, Jiagang Lü1、2, Zhipeng Pan1、2, Suping Liu1, and Xiaoyu Ma1
Author Affiliations
  • 1National Engineering Research Center for Optoelectronic Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL230906 Cite this Article Set citation alerts
    Yuwei Nie, Wei Li, Jiagang Lü, Zhipeng Pan, Suping Liu, Xiaoyu Ma. Oxidation-Limited 795 nm Vertical Cavity Surface Emission Laser[J]. Chinese Journal of Lasers, 2024, 51(6): 0601004 Copy Citation Text show less
    References

    [1] Choquette K D, Hou H Q. Vertical-cavity surface emitting lasers: moving from research to manufacturing[J]. Proceedings of the IEEE, 85, 1730-1739(1997).

    [2] Hao Y Q, Ma J L, Yan C L et al. A fundamental mode Nd∶GdVO4 laser pumped by a large aperture 808 nm VCSEL[J]. Laser Physics Letters, 10, 055003(2013).

    [3] Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215(2000).

    [4] Lü J G, Li W, Qi Y X et al. Optimal design of supporting structure of tunable vertical cavity surface emitting laser[J]. Acta Optica Sinica, 43, 0114003(2023).

    [5] Lemoff B E, Buckman L A, Schmit A J et al. Low-cost WDM transceivers for the LAN[C], 107-108(2002).

    [6] Kitching J, Knappe S, Vukicevic N et al. A microwave frequency reference based on VCSEL-driven dark-line resonances in Cs vapor[J]. IEEE Transaction on Instrumentation and Measurement, 49, 1313-1317(2000).

    [7] Vanier J, Godone A, Levi F. Coherent population trapping in cesium: dark lines and coherent microwave emission[J]. Physical Review A, 58, 2345-2358(1998).

    [8] Serkland D K, Peake G M, Geib K M et al. VCSELs for atomic clocks[J]. Proceedings of SPIE, 6132, 613208(2006).

    [9] Derebezov I A, Haisler V A, Bakarov A K et al. Single-mode vertical-cavity surface-emitting lasers for atomic clocks[J]. Optoelectronics, Instrumentation and Data Processing, 45, 361-366(2009).

    [10] Derebezov I A, Haisler V A, Bakarov A K et al. Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock[J]. Semiconductors, 44, 1422-1426(2010).

    [11] Maleev N A, Blokhin S A, Bobrov M A et al. Laser source for a compact nuclear magnetic resonance gyroscope[J]. Gyroscopy and Navigation, 9, 177-182(2018).

    [12] Qiu P P, Wu B, Li M et al. Low threshold current single mode 894 nm VCSELs with SiO2/Si3N4 dielectric DBRs[C](2020).

    [13] Sun Y R, Dong J R, Zhao Y M et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches[J]. Optical and Quantum Electronics, 49, 361(2017).

    [14] Zhou Y L, Jia Y C, Zhang X et al. 795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope[J]. Acta Physica Sinica, 71, 134204(2022).

    [15] Li X, Zhou Y L, Zhang X et al. High-power single-mode 894 nm VCSELs operating at high temperature (>2 mW @ 365 K)[J]. Applied Physics B, 128, 16(2022).

    [16] Fu Q X, Sun Y R, Yu S Z et al. Low threshold current and polarization-stabilized 795 nm vertical-cavity surface-emitting lasers[J]. Nanomaterials, 13, 1120(2023).

    [17] Jewell J L, Harbison J P, Scherer A et al. Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization[J]. IEEE Journal of Quantum Electronics, 27, 1332-1346(1991).

    [18] Lang R J, Hardy A, Parke R et al. Numerical analysis of flared semiconductor laser amplifiers[J]. IEEE Journal of Quantum Electronics, 29, 2044-2051(1993).

    [19] Dutta N K. Analysis of current spreading, carrier diffusion, and transverse mode guiding in surface emitting lasers[J]. Journal of Applied Physics, 68, 1961-1963(1990).

    [20] Choquette K D, Lear K L, Schneider R P et al. Fabrication and performance of selectively oxidized vertical-cavity lasers[J]. IEEE Photonics Technology Letters, 7, 1237-1239(1995).

    [21] Pan Z P, Li W, Qi Y X et al. Design and analysis of photonic crystal vertical-cavity surface-emitting lasers[J]. Acta Optica Sinica, 42, 1414002(2022).

    [22] Pan Z P, Li W, Lü J G et al. Reflection characteristics analysis of DBR in 940 nm VCSEL[J]. Chinese Journal of Lasers, 50, 0701007(2023).

    [23] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).

    [24] Hegblom E R, Babic D I, Thibeault B J et al. Scattering losses from dielectric apertures in vertical-cavity lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 379-389(1997).

    [25] Hegblom E R, Babic D I, Thibeault B J et al. Estimation of scattering losses in dielectrically apertured vertical cavity lasers[J]. Applied Physics Letters, 68, 1757-1759(1996).

    [26] Kim J H, Lim D H, Kim K S et al. Lateral wet oxidation of AlxGa1–xAs-GaAs depending on its structures[J]. Applied Physics Letters, 69, 3357-3359(1996).

    [27] Chen L, Luo Y, Feng Y et al. Temperature dependence of wet oxidation process based on VCSEL[J]. Chinese Journal of Lasers, 47, 0701023(2020).

    [28] Fan C C, Peng J H[M]. Guided wave optics(1988).

    [29] Lee H K, Song Y M, Lee Y T et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation[J]. Solid-State Electronics, 53, 1086-1091(2009).

    [30] Baveja P P, Kögel B, Westbergh P et al. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling[J]. Optics Express, 19, 15490-15505(2011).

    Yuwei Nie, Wei Li, Jiagang Lü, Zhipeng Pan, Suping Liu, Xiaoyu Ma. Oxidation-Limited 795 nm Vertical Cavity Surface Emission Laser[J]. Chinese Journal of Lasers, 2024, 51(6): 0601004
    Download Citation