• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 418 (2021)
Jianjun ZENG1, Kuibao ZHANG1、2、*, Daimeng CHEN1, Haiyan GUO1, Ting DENG1, and Kui LIU1
Author Affiliations
  • 11. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
  • 22. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
  • show less
    DOI: 10.15541/jim20200367 Cite this Article
    Jianjun ZENG, Kuibao ZHANG, Daimeng CHEN, Haiyan GUO, Ting DENG, Kui LIU. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering[J]. Journal of Inorganic Materials, 2021, 36(4): 418 Copy Citation Text show less
    References

    [1] ZHENGYI FU, JUNFENG GU, JI ZOU et al. Recent progress in high-entropy ceramic materials. Materials China, 38, 855-865(2019).

    [2] JIENWEI YEH, SWEKAI CHEN, LIN SUJIEN et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [3] B CANTOR, I T H CHANG, P KNIGHT et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218(2004).

    [4] CHANGNING NIU, R LAROSA CARLYN, JIASHI MIAO et al. Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 9, 1363(2018).

    [5] S PRAVEEN, S KIM H. High-entropy alloys: potential candidates for high-temperature applications-an overview. Advanced Engineering Materials, 20, 1700645(2018).

    [6] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511(2017).

    [7] J YEH. Recent progress in high-entropy alloys.. Annales De Chimie-Science Des Materiaux, 31, 633-648(2006).

    [8] MINGHAO CHUANG, MINGHUNG TSAI, WOEIREN WANG et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 59, 6308-6317(2011).

    [9] ZHIMING LI, G PRADEEP K, YUN DENG et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534, 227-230(2016).

    [10] M BUTLER T, P ALFANO J, L MARTENS R et al. High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM, 67, 246-259(2014).

    [11] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [12] R CHELLALI M, A SARKAR, H NANDAM S et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scripta Materialia, 166, 58-63(2019).

    [13] ZHIFENG LEI, XIONGJUN LIU, HUI WANG et al. Development of advanced materials via entropy engineering. Scripta Materialia, 165, 164-169(2019).

    [14] SICONG JIANG, TAO HU, JOSHUA GILD et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120(2018).

    [15] R DJENADIC, A SARKAR, O CLEMENS et al. Multicomponent equiatomic rare earth oxides. Materials Research Letters, 5, 102-109(2016).

    [16] V BRAIC, A VLADESCU, M BALACEANU et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology, 211, 117-121(2012).

    [17] T JIN, X SANG, R UNOCIC R et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [18] XIAO-FENG WEI, JI-XUAN LIU, FEI LI et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 39, 2989-2994(2019).

    [19] XUELIANG YAN, LOIC CONSTANTIN, YONGFENG LU et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 101, 4486-4491(2018).

    [20] J GILD, J BRAUN, K KAUFMANN et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 5, 337-343(2019).

    [21] H MAYRHOFER P, A KIRNBAUER, P ERTELTHALER et al. High-entropy ceramic thin films; a case study on transition metal diborides. Scripta Materialia, 149, 93-97(2018).

    [22] DA LIU, TONGQI WEN, BEILIN YE et al. Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 167, 110-114(2019).

    [23] A SUBRAMANIAN M, G ARAVAMUDAN, V RAO G. Oxide pyrochlores—a review. Progress in Solid State Chemistry, 15, 55-143(1983).

    [24] J TROJAN P, E ZYCH, M KOSIŃSKA. Fabrication and spectroscopic properties of nanocrystalline La2Hf2O7: Pr. Radiation Measurements, 45, 432-434(2010).

    [25] R WHITTLE K, L M D CRANSWICK, S A T REDFERN et al. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2-xYxZr2O7 and La2-xYxHf2O7. Journal of Solid State Chemistry, 182, 442-450(2009).

    [26] ZHENGJUAN WANG, GUOHONG ZHOU, DANYU JIANG et al. Recent development of A2B2O7 system transparent ceramics. Journal of Advanced Ceramics, 7, 289-306(2018).

    [27] J SU S, Y DING, Y SHU X et al. Nd and Ce simultaneous substitution driven structure modifications in Gd2-xNdxZr2-yCeyO7. Journal of the European Ceramic Society, 35, 1847-1853(2014).

    [28] FEI LI, LIN ZHOU, JIXUAN LIU et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 8, 576-582(2019).

    [29] ZONGSHENG HE, KUIBAO ZHANG, JIALI XUE et al. Self-propagation high-temperature synthesis of Sm-doped pyrochlores ceramic form and its aqueous durability. Materials Reports, 32, 247-250(2018).

    [30] E SICKAFUS K, L MINERVINI, W GRIMES R et al. Radiation tolerance of complex oxides. Science, 289, 748-751(2000).

    [31] O EL-ATWANI, N LI, M LI et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Science Advances, 5, eaav2002(2019).

    [32] A KAREER, C WAITE J, B LI et al. Low activation, refractory, high entropy alloys for nuclear applications. Journal of Nuclear Materials, 526, 151744(2019).

    [33] YAMING JI, DANYU JIANG, TAO FEN et al. Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders. Materials Research Bulletin, 40, 553-559(2005).

    [34] WENWEN ZHAO, KUIBAO ZHANG, WEIWEI LI et al. Fabrication and optical properties of transparent LaErZr2O7 ceramic with high excess contents of La and Er. Ceramics International, 45, 11717-11722(2019).

    [35] ZHENGJUAN WANG, GUOHONG ZHOU, XIANPENG QIN et al. Fabrication and phase transition of La2-xLuxZr2O7 transparent ceramics. Journal of the European Ceramic Society, 34, 3951-3958(2014).

    [36] ZHENGJUAN WANG, GUOHONG ZHOU, FANG ZHANG et al. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics. Journal of Luminescence, 169, 612-615(2016).

    [37] HAILAN YI, XIAOQING ZOU, YAN YANG et al. Fabrication of highly transmitting LaGdHf2O7 ceramics. Journal of the American Ceramic Society, 94, 4120-4122(2011).

    [38] GUOHONG ZHOU, ZHENGJUAN WANG, BOZHU ZHOU et al. Fabrication of transparent Y2Hf2O7 ceramics via vacuum sintering. Optical Materials, 35, 774-777(2013).

    [39] L HU Y, H BAI L, G TONG Y et al. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys. Journal of Alloys and Compounds, 827, 153963(2020).

    [40] GUANGRAN ZHANG, IVA MILISAVLJEVIC, EUGENIUSZ ZYCH et al. High-entropy sesquioxide X2O3 upconversion transparent ceramics. Scripta Materialia, 186, 19-23(2020).

    [41] XIANQIANG CHEN, YIQUAN WU. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society, 103, 750-756(2019).

    [42] KUIBAO ZHANG, WEIWEI LI, JIANJUN ZENG et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder. Journal of Alloys and Compounds, 817, 153328(2020).

    [43] WEIWEI LI, KUIBAO ZHANG, WENWEN ZHAO et al. Vacuum sintering and optical properties of Gd2-xNdxZr2O7 transparent ceramics using combustion synthesized nanopowders. Optical Materials, 100, 109622(2020).

    [44] WEIWEI LI, KUIBAO ZHANG, DAYAN XIE et al. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder. Journal of the European Ceramic Society, 40, 1665-1670(2020).

    [45] H LEE Y, S SHEU H, P DENG J et al. Preparation and fluorite- pyrochlore phase transformation in Gd2Zr2O7. Journal of Alloys and Compounds, 487, 595-598(2009).

    [46] M GLERUP, F NIELSEN O, W POULSEN F. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 160, 25-32(2001).

    [47] XIAOQING ZOU, GUOHONG ZHOU, HAILAN YI et al. Fabrication of transparent Y2Hf2O7 ceramic from combustion synthesized powders. Journal of Inorganic Materials, 26, 929-932(2011).

    [48] K GUPTA S, C REGHUKUMAR, K SUDARSHAN et al. Orange-red emitting Gd2Zr2O7:Sm3+: structure-property correlation, optical properties and defect spectroscopy. Journal of Physics and Chemistry of Solids, 116, 360-366(2018).

    [49] J TROJAN-PIEGZA, C D S BRITES, J F C B RAMALHO et al. La0.4Gd1.6Zr2O7:0.1%Pr transparent sintered ceramic-a wide-range luminescence thermometer. Journal of Materials Chemistry C, 8, 7005-7011(2020).

    Jianjun ZENG, Kuibao ZHANG, Daimeng CHEN, Haiyan GUO, Ting DENG, Kui LIU. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering[J]. Journal of Inorganic Materials, 2021, 36(4): 418
    Download Citation