• Photonics Research
  • Vol. 5, Issue 6, 689 (2017)
Yiming Zhong1, Linjie Zhou1、*, Yanyang Zhou1, Yujie Xia1, Siqi Liu1, Liangjun Lu1, Jianping Chen1, and Xingjun Wang2
Author Affiliations
  • 1Shanghai Institute for Advanced Communication and Data Science, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.5.000689 Cite this Article Set citation alerts
    Yiming Zhong, Linjie Zhou, Yanyang Zhou, Yujie Xia, Siqi Liu, Liangjun Lu, Jianping Chen, Xingjun Wang. Microwave frequency upconversion employing a coupling-modulated ring resonator[J]. Photonics Research, 2017, 5(6): 689 Copy Citation Text show less
    References

    [1] A. J. Seeds, K. J. Williams. Microwave photonics. J. Lightwave Technol., 24, 4628-4641(2006).

    [2] T. Berceli, P. R. Herczfeld. Microwave photonics-A historical perspective. IEEE Trans. Microwave Theory Tech., 58, 2992-3000(2010).

    [3] A. Madjar, T. Berceli. Microwave generation by optical techniques-A review. 36th European Microwave Conference, 1099-1102(2006).

    [4] A. Stohr, A. Malcoci, D. Jager. THz photomixing employing travelling-wave photodetectors. IEEE MTT-S International Microwave Symposium Digest, 275-278(2004).

    [5] A. Madjar, P. R. Herczfeld, A. Rosen, P. Yu, D. Jager. Design considerations for a uni-traveling carrier traveling wave photo detector for efficient generation of millimeter wave and sub-mm wave signals. European Microwave Conference, 3(2005).

    [6] D. Eliyahu, K. Sariri, J. Taylor, L. Maleki. Optoelectronic oscillator with improved phase noise and frequency stability. Proc. SPIE, 4998, 139-147(2003).

    [7] T. Banky, T. Berceli, B. Horváth. Improving the frequency stability and phase noise of opto-electronic oscillators by harmonic feedback. IEEE MTT-S International Microwave Symposium Digest, 291-294(2004).

    [8] N. Yu, E. Salik, L. Maleki. Photonic microwave oscillator using mode-locked laser as the high Q resonator. IEEE International Frequency Control Symposium and Exposition, 219-223(2004).

    [9] K. K. Gupta, D. Novak, H.-F. Liu. Noise characterization of a regeneratively mode-locked fiber ring laser. IEEE J. Quantum Electron., 36, 70-78(2000).

    [10] G. H. Smith, D. Novak, Z. Ahmed. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microwave Theory Tech., 45, 1410-1415(1997).

    [11] X. Lin, L. Chao, C. W. Chow, T. Hon Ki. Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter. IEEE Photon. Technol. Lett., 21, 209-211(2009).

    [12] J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie. A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression. IEEE Photon. Technol. Lett., 19, 1057-1059(2007).

    [13] G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Trans. Microwave Theory Tech., 53, 3090-3097(2005).

    [14] W. Li, J. Yao. Investigation of photonically assisted microwave frequency multiplication based on external modulation. IEEE Trans. Microwave Theory Tech., 58, 3259-3268(2010).

    [15] J. O’reilly, P. Lane, R. Heidemann, R. Hofstetter. Optical generation of very narrow linewidth millimetre wave signals. Electron. Lett., 28, 2309-2311(1992).

    [16] J. O’reilly, P. Lane. Fibre-supported optical generation and delivery of 60  GHz signals. Electron. Lett., 30, 1329-1330(1994).

    [17] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [18] L. Zhou, Y. Zhou, M. Wang, Y. Zhong, Y. Xia, J. Chen. Microwave signal processing using high speed silicon optical modulators. Asia Communications and Photonics Conference, AS2E.2(2016).

    [19] Y. Zhong, L. Zhou, Y. Xia, M. Wang, J. Chen. Microwave frequency-doubling based on a coupling-modulated silicon ring resonator. CLEO: Science and Innovations, SM1O.8(2017).

    [20] H. Shao, H. Yu, X. Li, Y. Li, J. Jiang, H. Wei, G. Wang, T. Dai, Q. Chen, J. Yang, X. Jiang. On-chip microwave signal generation based on a silicon microring modulator. Opt. Lett., 40, 3360-3363(2015).

    [21] R. Yang, L. Zhou, H. Zhu, J. Chen. 28  Gb/s BPSK modulation in a coupling-tuned silicon microring resonator. Conference on Lasers and Electro-Optics (CLEO), 1-2(2015).

    [22] R. Yang, L. Zhou, H. Zhu, J. Chen. Low-voltage high-speed coupling modulation in silicon racetrack ring resonators. Opt. Express, 23, 28993-29003(2015).

    [23] W. D. Sacher, J. K. S. Poon. Characteristics of microring resonators with waveguide-resonator coupling modulation. J. Lightwave Technol., 27, 3800-3811(2009).

    [24] W. D. Sacher, J. K. Poon. Dynamics of microring resonator modulators. Opt. Express, 16, 15741-15753(2008).

    [25] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    Yiming Zhong, Linjie Zhou, Yanyang Zhou, Yujie Xia, Siqi Liu, Liangjun Lu, Jianping Chen, Xingjun Wang. Microwave frequency upconversion employing a coupling-modulated ring resonator[J]. Photonics Research, 2017, 5(6): 689
    Download Citation