• Photonics Research
  • Vol. 9, Issue 2, 259 (2021)
Kun Huang1、*, Yinqi Wang1, Jianan Fang1, Weiyan Kang2, Ying Sun2, Yan Liang2, Qiang Hao2, Ming Yan1, and Heping Zeng1、3、4、5、6
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Jinan Institute of Quantum Technology, Jinan 250101, China
  • 4CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 5Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 6e-mail: hpzeng@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.410302 Cite this Article Set citation alerts
    Kun Huang, Yinqi Wang, Jianan Fang, Weiyan Kang, Ying Sun, Yan Liang, Qiang Hao, Ming Yan, Heping Zeng. Mid-infrared photon counting and resolving via efficient frequency upconversion[J]. Photonics Research, 2021, 9(2): 259 Copy Citation Text show less
    References

    [1] M. Ebrahim-Zadeh, I. T. Sorokina. Mid-Infrared Coherent Sources and Applications(2008).

    [2] K. L. Vodopyanov. Laser-Based Mid-Infrared Sources and Applications(2020).

    [3] M. Razeghi, B.-M. Nguyen. Advances in mid-infrared detection and imaging: a key issues review. Rep. Prog. Phys., 77, 082401(2014).

    [4] S. Keuleyan, E. Lhuillier, V. Brajuskovic, P. Guyot-Sionnest. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics, 5, 489-493(2011).

    [5] Q. Guo, R. Yu, C. Li, S. Yuan, B. Deng, F. Javier García de Abajo, F. Xia. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater., 17, 986-992(2018).

    [6] J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G. H. Ahn, V. Adinolfi, V. R. Shrestha, Y. Gao, K. B. Crozier, Y.-L. Chueh, A. Javey. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics, 12, 601-607(2018).

    [7] F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, K. K. Berggren. Efficient single photon detection from 500 nm to 5 μm wavelength. Nano Lett., 12, 4799-4804(2012).

    [8] Q. Chen, R. Ge, L. Zhang, F. Li, B. Zhang, Y. Dai, Y. Fei, X. Wang, X. Jia, Q. Zhao, X. Tu, L. Kang, J. Chen, P. Wu. Mid-infrared single photon detector with superconductor Mo80Si20 nanowire(2020).

    [9] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [10] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, E. Knill. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A, 82, 031802(2010).

    [11] N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, S. Inoue. Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength. Nat. Photonics, 4, 655-660(2010).

    [12] M. Avenhaus, K. Laiho, M. V. Chekhova, C. Silberhorn. Accessing higher order correlations in quantum optical states by time multiplexing. Phys. Rev. Lett., 104, 063602(2010).

    [13] R. Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. W. Nam, O. Pfister. State-independent quantum state tomography by photon-number-resolving measurements. Optica, 6, 1356-1360(2019).

    [14] L. Cohen, E. S. Matekole, Y. Sher, D. Istrati, H. S. Eisenberg, J. P. Dowling. Thresholded quantum LIDAR: exploiting photon-number-resolving detection. Phys. Rev. Lett., 123, 203601(2019).

    [15] F. E. Becerra, J. Fan, A. Migdall. Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photonics, 9, 48-53(2015).

    [16] Y.-H. Zhou, Z.-W. Yu, X.-B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).

    [17] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [18] G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, J. Faist. Mid-infrared single-photon counting. Opt. Lett., 31, 1094-1096(2006).

    [19] Q. Zhou, K. Huang, H. Pan, E. Wu, H. Zeng. Ultrasensitive mid-infrared up-conversion imaging at few-photon level. Appl. Phys. Lett., 102, 241110(2013).

    [20] M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, L. Pavesi. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun., 8, 15184(2017).

    [21] M. Mrejen, Y. Erlich, A. Levanon, H. Suchowski. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photon. Rev., 14, 2000040(2020).

    [22] T. W. Neely, L. Nugent-Glandorf, F. Adler, S. A. Diddams. Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide. Opt. Lett., 37, 4332-4334(2012).

    [23] L. Lehmann, L. Grossard, L. Delage, F. Reynaud, M. Chauvet, F. Bassignot. Single photon MIR upconversion detector at room temperature with a PPLN ridge waveguide. Opt. Express, 27, 19233-19241(2019).

    [24] X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, W. M. J. Green. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics, 6, 667-671(2012).

    [25] Q. Zheng, H. Zhu, S.-C. Chen, C. Tang, E. Ma, X. Chen. Frequency-upconverted stimulated emission by simultaneous five-photon absorption. Nat. Photonics, 7, 234-239(2013).

    [26] D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, E. W. V. Stryland. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photonics, 5, 561-565(2011).

    [27] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics, 6, 788-793(2012).

    [28] D. Knez, A. M. Hanninen, R. C. Prince, E. O. Potma, D. A. Fishman. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras. Light Sci. Appl., 9, 125(2020).

    [29] R. Demur, A. Grisard, L. Morvan, E. Lallier, N. Treps, C. Fabre. High sensitivity narrowband wavelength mid-infrared detection at room temperature. Opt. Lett., 42, 2006-2009(2017).

    [30] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, M. M. Fejer. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19, 21445-21456(2011).

    [31] K. Huang, X. Gu, H. Pan, E. Wu, H. Zeng. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett., 100, 151102(2012).

    [32] K. Huang, X. R. Gu, H. F. Pan, E. Wu, H. P. Zeng. Synchronized fiber lasers for efficient coincidence single-photon frequency upconversion. IEEE J. Sel. Top. Quantum Electron., 18, 562-566(2012).

    [33] T. Xiang, Q.-C. Sun, Y. Li, Y. Zheng, X. Chen. Single-photon frequency conversion via cascaded quadratic nonlinear processes. Phys. Rev. A, 97, 063810(2018).

    [34] R. L. Pedersen, L. Høgstedt, A. Barh, L. Meng, P. Tidemand-Lichtenberg. Characterization of the NEP of mid-infrared upconversion detectors. IEEE Photon. Technol. Lett., 31, 681-684(2019).

    [35] E. Pomarico, B. Sanguinetti, R. Thew, H. Zbinden. Room temperature photon number resolving detector for infared wavelengths. Opt. Express, 18, 10750-10759(2010).

    [36] K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, H. Zeng. Photon-number-resolving detection at 1040 μm coincidence frequency upconversion. Opt. Lett., 36, 1722-1724(2011).

    [37] R. A. McCracken, F. Graffitti, A. Fedrizzi. Numerical investigation of mid-infrared single-photon generation. J. Opt. Soc. Am. B, 35, C38-C48(2018).

    [38] Y. M. Sua, H. Fan, A. Shahverdi, J.-Y. Chen, Y.-P. Huang. Direct generation and detection of quantum correlated photons with 3.2  μm wavelength spacing. Sci. Rep., 7, 17494(2017).

    [39] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden. A photonic quantum information interface. Nature, 437, 116-120(2005).

    [40] H. Takesue. Single-photon frequency down-conversion experiment. Phys. Rev. A, 82, 013833(2010).

    [41] K. Huang, X. Gu, Q. Zhou, H. Pan, E. Wu, H. Zeng. Efficient generation of mid-infrared photons at 3.16  μm by coincidence frequency downconversion. Laser Phys., 23, 045401(2013).

    [42] J. Zeng, B. Li, Q. Hao, M. Yan, K. Huang, H. Zeng. Passively synchronized dual-color mode-locked fiber lasers based on nonlinear amplifying loop mirrors. Opt. Lett., 44, 5061-5064(2019).

    [43] W. Kang, B. Li, Y. Liang, Q. Hao, M. Yan, K. Huang, H. Zeng. Coincidence-pumping upconversion detector based on passively synchronized fiber laser system. IEEE Photon. Technol. Lett., 32, 184-187(2020).

    [44] L. Meng, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, P. John Rodrigo. Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence. Opt. Express, 26, 24712-24722(2018).

    [45] M. Widarsson, M. Henriksson, P. Mutter, C. Canalias, V. Pasiskevicius, F. Laurell. High resolution and sensitivity up-conversion mid-infrared photon-counting LIDAR. Appl. Opt., 59, 2365-2369(2020).

    [46] S. Wolf, T. Trendle, J. Kiessling, J. Herbst, K. Buse, F. Kühnemann. Self-gated mid-infrared short pulse upconversion detection for gas sensing. Opt. Express, 25, 24459-24468(2017).

    [47] Z. Bao, Y. Liang, Z. Wang, Z. Li, E. Wu, G. Wu, H. Zeng. Laser ranging at few-photon level by photon-number-resolving detection. Appl. Opt., 53, 3908-3912(2014).

    [48] C.-Q. Hu, Z.-Q. Yan, J. Gao, Z.-Q. Jiao, Z.-M. Li, W.-G. Shen, Y. Chen, R.-J. Ren, L.-F. Qiao, A.-L. Yang, H. Tang, X.-M. Jin. Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication. Photon. Res., 7, A40-A44(2019).

    Kun Huang, Yinqi Wang, Jianan Fang, Weiyan Kang, Ying Sun, Yan Liang, Qiang Hao, Ming Yan, Heping Zeng. Mid-infrared photon counting and resolving via efficient frequency upconversion[J]. Photonics Research, 2021, 9(2): 259
    Download Citation