• Laser & Optoelectronics Progress
  • Vol. 56, Issue 18, 181601 (2019)
Zhongling Ba1、2、3 and Xiong Wang1、*
Author Affiliations
  • 1 School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China
  • 2 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP56.181601 Cite this Article Set citation alerts
    Zhongling Ba, Xiong Wang. High-Efficiency Wideband Millimeter Wave Metasurface Structure with Gradient Phase[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181601 Copy Citation Text show less
    References

    [1] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 54, 10-35(2012). http://ieeexplore.ieee.org/document/6230714

    [2] Zhou L, Zhao G Z, Li Y H. Broadband terahertz polarization converter based on L-shaped metamaterial[J]. Laser & Optoelectronics Progress, 55, 041602(2018).

    [3] Cao J G, Zhou Y X. Polarization modulation of terahertz wave by graphene metamaterial with grating structure[J]. Laser & Optoelectronics Progress, 55, 092501(2018).

    [4] Yang J, Zhang H F, Zhang H et al. Ultra-broadband absorber based on plasma metamaterials[J]. Laser & Optoelectronics Progress, 55, 091602(2018).

    [5] Hao H G, Ding T Y, Luo W et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 55, 061604(2018).

    [6] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012). http://europepmc.org/abstract/med/22894542

    [7] Neu J, Beigang R, Rahm M. Metamaterial-based gradient index beam steerers for terahertz radiation[J]. Applied Physics Letters, 103, 041109(2013). http://scitation.aip.org/content/aip/journal/apl/103/4/10.1063/1.4816345

    [8] Pors A, Bozhevolnyi S I. Efficient and broadband quarter-wave plates by gap-plasmon resonators[J]. Optics Express, 21, 2942-2952(2013). http://www.ncbi.nlm.nih.gov/pubmed/23481752

    [9] Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014). http://www.nature.com/articles/lsa201448

    [10] Bi F, Ba Z L, Wang X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region[J]. Optics Express, 26, 25693-25705(2018). http://www.onacademic.com/detail/journal_1000040853606210_c833.html

    [11] Ba Z L, Wang X. Metasurface for generating high-order millimeter wave orbital angular momentum beams. [C]//2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), July 29-August 1, 2018, Beijing, China. New York: IEEE, 18546861(2018).

    [12] Ba Z L, Wang X. A transmission metasurface for generating high-efficiency broadband millimeter wave OAM beams. [C]//The 13th European Conference on Antennas and Propagation (EuCAP 2019), March 31-April 5, 2019, Krakow, Poland. New York: IEEE, 1-4(2019).

    [13] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015). http://europepmc.org/articles/PMC4579785

    [14] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011). http://www.ncbi.nlm.nih.gov/pubmed/21885733

    [15] Chen H Y, Ma H, Wang J F et al. Ultra-wideband transparent 90° polarization conversion metasurfaces[J]. Applied Physics A, 122, 463(2016).

    [16] Mohammadi S M. Daldorff L K S, Bergman J E S, et al. Orbital angular momentum in radio: a system study[J]. IEEE Transactions on Antennas and Propagation, 58, 565-572(2010).

    [17] Liu K, Liu H Y, Qin Y L et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 64, 3850-3857(2016). http://ieeexplore.ieee.org/document/7508989/

    Zhongling Ba, Xiong Wang. High-Efficiency Wideband Millimeter Wave Metasurface Structure with Gradient Phase[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181601
    Download Citation