• Acta Physica Sinica
  • Vol. 68, Issue 21, 210201-1 (2019)
Jun-Chao Sun1, Zong-Guo Zhang2, Huan-He Dong1, and Hong-Wei Yang1、*
Author Affiliations
  • 1College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, China
  • 2School of Mathematics Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
  • show less
    DOI: 10.7498/aps.68.20191045 Cite this Article
    Jun-Chao Sun, Zong-Guo Zhang, Huan-He Dong, Hong-Wei Yang. Fractional order model and Lump solution in dusty plasma[J]. Acta Physica Sinica, 2019, 68(21): 210201-1 Copy Citation Text show less

    Abstract

    In recent years, the dust plasma research plays an important role in the field of space, industry, and laboratory. In this paper, starting from the control equations of the double temperature dust plasma, we derive the (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation to describe the double temperature dust plasma sound waves by using the multi-scale analysis, and reduce it by using the perturbation method. Then by using the semi inverse method and fractional variational principle, the (2+1)-dimensional KP equation is introduced into the time-space fractional KP equation (TFS-KP). The fractional KP equation has potential applications in describing physical phenomena in practical problems. Furthermore, based on the symmetrical analysis method, by which lie discussed the time fractional KP (TF-KP) equation of the conservation law, the dual temperature dust plasma acoustic conserves quantity. Finally, based on the bilinear method, the lump solution of fractional KP equation is obtained. The existence of this solution indicates the rogue waves existing in double temperature dusty plasma. The influence of fractional order on rogue wave is also analyzed.
    $ n_{{\rm il}0}+n_{{\rm ih} 0} = \sum\limits_{j = 1}^{N} Z_{{\rm d}0_{j}}n_{{\rm d}0_{j}}+n_{{\rm e}0}, $()

    View in Article

    $ \left\{\begin{aligned}& \frac{\partial n_{{\rm d}_{j}}}{\partial t}+\nabla\cdot(n_{{\rm d}_{j}}{{u}_{{\rm d}_{j}}}) = 0,\\ &\frac{\partial {{u}_{{\rm d}_{j}}}}{\partial t}+({{u}_{{\rm d}_{j}}}\cdot\nabla){{u}_{{\rm d}_{j}}} = \frac{Z_{{\rm d}_{j}}}{m_{{\rm d}_{j}}}\nabla\varPhi,\\ & \frac{\partial ^{2}\varPhi}{\partial x^{2}}+\frac{\partial ^{2}\varPhi}{\partial y^{2}} = \sum\limits_{j = 1}^{N} Z_{{\rm d}_{j}}n_{{\rm d}_{j}}+n_{\rm e}-n_{{\rm il}}-n_{{\rm ih}}, \end{aligned} \right. $(1)

    View in Article

    $ \left\{ \begin{aligned}& \frac{\partial n_{{\rm d}}}{\partial t}+\frac{\partial (n_{{\rm d}}u_{{\rm d}})}{\partial x}+\frac{\partial (n_{{\rm d}}v_{{\rm d}})}{\partial y} = 0,\\ & \frac{\partial u_{{\rm d}}}{\partial t}+u_{{\rm d}}\frac{\partial u_{{\rm d}}}{\partial x}+v_{{\rm d}}\frac{\partial u_{{\rm d}}}{\partial y} = \frac{\partial \phi}{\partial x},\\ & \frac{\partial v_{{\rm d}}}{\partial t}+u_{{\rm d}}\frac{\partial v_{{\rm d}}}{\partial x}+v_{{\rm d}}\frac{\partial v_{{\rm d}}}{\partial y} = \frac{\partial \phi}{\partial y},\\ & \frac{\partial ^{2}\phi}{\partial x^{2}}+\frac{\partial ^{2}\phi}{\partial y^{2}} = n_{{\rm d}}-1+C_{1}\phi+C_{2}\phi^{2}+C_{3}\phi^{3}, \end{aligned} \right. $(2)

    View in Article

    $ \begin{aligned} & C_{1} = \frac{\gamma}{\mu-1}\left[ {C_{\rm e} \left( {H_{\rm e}-\frac{1}{2}} \right)+C_{\rm i}\left( {H_{\rm i}-\frac{1}{2}} \right)} \right],\\ & C_{2} = \frac{\gamma}{2(1-\mu)}\left[ {\mu C_{\rm e}^{2}\left( {H_{\rm e}^{2}-\frac{1}{4}} \right)+C_{{\rm i}}^{2}\left( {H_{{\rm i}}^{2}-\frac{1}{4}} \right)} \right],\\ & C_{3} = \frac{\gamma}{6(\mu-1)}\left[\mu C_{\rm e}^{3}\left( {H_{\rm e}^{2}-\frac{1}{4}} \right)\left( {H_{\rm e}-\frac{3}{2}} \right)\right.\\ &\quad\quad \left.+C_{{\rm i}}^{3}\left( {H_{{\rm i}}^{2}-\frac{1}{4}} \right)\left( {H_{\rm i}+\frac{3}{2}} \right)\right], \end{aligned} $(3)

    View in Article

    $ \xi = \varepsilon(x-v_{0}t), ~\eta = \varepsilon^{2} y,~ \tau = \varepsilon^{3}t, $(4)

    View in Article

    $\begin{split} & \frac{\partial}{\partial t} = \varepsilon^{3}\frac{\partial}{\partial \tau}-\varepsilon v_{0}\frac{\partial}{\partial \xi},\\ & \frac{\partial}{\partial x} = \varepsilon\frac{\partial}{\partial \xi},\; \; \frac{\partial}{\partial y} = \varepsilon^{2}\frac{\partial}{\partial \eta}. \end{split}$(5)

    View in Article

    $ \left\{ \begin{aligned} & n_{{\rm d}} = 1+\varepsilon^{2}n_{{\rm d}_{1}}+\varepsilon^{4}n_{{\rm d}_{2}}+\cdots,\\ & u_{{\rm d}} = \varepsilon^{2}u_{{\rm d}_{1}}+\varepsilon^{4}u_{{\rm d}_{2}}+\cdots,\\ & v_{{\rm d}} = \varepsilon^{3}v_{{\rm d}_{1}}+\varepsilon^{5}v_{{\rm d}_{2}}+\cdots,\\ & \phi = \varepsilon^{2} \phi_{1}+\varepsilon^{4}\phi_{2}+\cdots. \end{aligned} \right. $(6)

    View in Article

    $ \left\{\begin{aligned} & \varepsilon^{3}\frac{\partial n_{{\rm d}}}{\partial \tau}-\varepsilon v_{0}\frac{\partial n_{{\rm d}}}{\partial \xi}+\varepsilon\frac{\partial (n_{{\rm d}}u_{{\rm d}})}{\partial \xi}+\varepsilon^{2}\frac{\partial (n_{{\rm d}}v_{{\rm d}})}{\partial \eta} = 0,\\ & \varepsilon^{3}\frac{\partial u_{{\rm d}}}{\partial \tau}-\varepsilon v_{0}\frac{\partial u_{{\rm d}}}{\partial \xi}+\varepsilon u_{{\rm d}}\frac{\partial u_{{\rm d}}}{\partial \xi}+\varepsilon ^{2}v_{{\rm d}}\frac{\partial u_{{\rm d}}}{\partial \eta} = \varepsilon\frac{\partial \phi}{\partial \xi},\\ & \varepsilon^{3}\frac{\partial v_{{\rm d}}}{\partial \tau}-\varepsilon v_{0}\frac{\partial v_{{\rm d}}}{\partial \xi}+\varepsilon u_{{\rm d}}\frac{\partial v_{{\rm d}}}{\partial \xi}+\varepsilon ^{2}v_{{\rm d}}\frac{\partial v_{{\rm d}}}{\partial \eta} = \varepsilon^{2}\frac{\partial \phi}{\partial \eta},\\ & \varepsilon^{2}\frac{\partial ^{2}\phi}{\partial \xi^{2}}+\varepsilon^{4}\frac{\partial ^{2}\phi}{\partial \eta^{2}} = n_{{\rm d}}-1+C_{1}\phi+C_{2}\phi^{2}+C_{3}\phi^{3}. \end{aligned}\right. $(7)

    View in Article

    $ \varepsilon^{3}: \left\{\begin{aligned} &-v_{0}\frac{\partial n_{{\rm d}_{1}}}{\partial \xi}+\frac{\partial u_{{\rm d}_{1}}}{\partial \xi} = 0,\\ & -v_{0}\frac{\partial u_{{\rm d}_{1}}}{\partial \xi} = \frac{\partial \phi_{1}}{\partial \xi}, \end{aligned} \right. ~~~~~~~ $(8)

    View in Article

    $ \varepsilon^{4}: \left\{ \begin{aligned} & -v_{0}\frac{\partial v_{{\rm d}_{1}}}{\partial \xi} = \frac{\partial \phi_{1}}{\partial \eta},\\ & \frac{\partial ^{2}\phi_{1}}{\partial \xi^{2}} = n_{{\rm d}_{2}}+C_{1}\phi_{2}+C_{2}\phi_{1}^{2}, \end{aligned} \right. $(9)

    View in Article

    $ \varepsilon^{5}: \left\{ \begin{aligned} & \frac{\partial n_{{\rm d}_{1}}}{\partial \tau}-v_{0}\frac{\partial n_{{\rm d}_{2}}}{\partial \xi}+\frac{\partial u_{{\rm d}_{2}}}{\partial \xi}+\frac{\partial u_{{\rm d}_{1}}n_{{\rm d}_{1}}}{\partial \xi}+\frac{\partial v_{{\rm d}_{1}}}{\partial \eta} = 0,\\ & \frac{\partial u_{{\rm d}_{1}}}{\partial \tau}-v_{0}\frac{\partial u_{{\rm d}_{2}}}{\partial \xi}+u_{{\rm d}_{1}}\frac{\partial u_{{\rm d}_{1}}}{\partial \xi} = \frac{\partial \phi_{2}}{\partial \xi}. \end{aligned} \right. $(10)

    View in Article

    $ \left\{\begin{aligned} & n_{{\rm d}_{1}} = \frac{u_{{\rm d}_{1}}}{v_{0}},\\ & u_{{\rm d}_{1}} = -\frac{\phi_{1}}{v_{0}},\\ & -v_{0}\frac{\partial v_{{\rm d}_{1}}}{\partial \xi} = \frac{\partial \phi_{1}}{\partial \eta},\\ & \frac{\partial ^{2}\phi_{1}}{\partial \xi^{2}} = n_{{\rm d}_{2}}+C_{1}\phi_{2}+C_{2}\phi_{1}^{2}. \end{aligned} \right. $(11)

    View in Article

    $ \frac{\partial}{\partial \xi}\left( {\frac{\partial \phi_{1}}{\partial \tau}+b_{1}\phi_{1}\frac{\partial \phi_{1}}{\partial \xi}+b_{2}\frac{\partial ^{3}\phi_{1}}{\partial ^{3}\xi}} \right)+b_{3}\frac{\partial ^{2}\phi_{1}}{\partial ^{2}\eta} = 0, $(12)

    View in Article

    $ \left\{\begin{aligned}& b_{1} = -\frac{3}{2v_{0}}-v_{0}^{2}C_{2},\\ & b_{2} = \frac{v_{0}^{3}}{2}, \; b_{3} = \frac{v_{0}}{2}.\\ \end{aligned} \right. $(13)

    View in Article

    $D_t^\omega f = \left\{ {\begin{aligned} &{\frac{{{\partial ^n}f}}{{\partial {t^n}}},} \quad\quad\quad\quad\quad\quad\quad\quad {\omega = n,\;n \in N,}\\ &{\frac{1}{{{\varGamma(n\!-\!\omega)}(n \!- \!\omega )}}\frac{{{\partial ^n}}}{{\partial {T^n}}}\int_0^{{T_0}}\!\! f {{(T\! - \!\tau )}^{n - \omega - 1}}{\rm{d}}\tau ,}\\ &\quad\quad\quad \quad \quad\quad\qquad\quad\quad {n - 1 <\omega < n.} \end{aligned}} \right.$(14)

    View in Article

    $ A_{\tau}+b_{1}AA_{\xi}+b_{2}A_{\xi\xi\xi}+b_{3}D^{-1}A_{\eta\eta} = 0,$(15)

    View in Article

    $ B_{\xi\tau}+b_{1}B_{\xi}B_{\xi\xi}+b_{2}B_{\xi\xi\xi\xi}+b_{3}B_{\eta\eta} = 0,\\ $(16)

    View in Article

    $ \begin{split} J(B) \!=\, & \iint\nolimits_{R}{\rm{d}}\xi {\rm{d}}\eta \int_T {\rm{d}} \tau [B({c_1}{B_{\xi \tau }} \!+\! {c_2}{b_1}{B_\xi }{B_{\xi \xi }}\\ & + {c_3}{b_2}{B_{\xi \xi \xi \xi }} + {c_4}{b_3}{B_{\eta \eta }})], \end{split}$(17)

    View in Article

    $ \begin{split} J(B) =\, & \iint\nolimits_{R} {\rm{d}}\xi {\rm{d}}\eta \int_{T}{\rm{d}}\tau\left[ {-c_{1}B_{\xi}B_{\tau} \!-\! \frac{1}{2}c_{2}b_{1}B_{\xi}^{3}}\right.\\ & { +c_{3}b_{2}(B_{\xi\xi})^{2}+c_{4}b_{3}(B_{\eta})^{2}} \Big], \end{split}$(18)

    View in Article

    $ \begin{split} & F(\xi,\eta,\tau,B,B_{\tau},B_{\xi},B_{\xi\xi},B_{\eta})\\ = \, & \frac{\partial F}{\partial B}-\frac{\partial}{\partial \tau}\left( {\frac{\partial F}{\partial B_{\tau}}} \right)-\frac{\partial}{\partial \xi}\left( {\frac{\partial F}{\partial B_{\xi}}} \right)\\ & -\frac{\partial}{\partial \eta}\left( {\frac{\partial F}{\partial B_{\eta}}} \right)+ \frac{\partial^{2}}{\partial \xi^{2}}\left( {\frac{\partial F}{\partial B_{\xi\xi}}} \right)\\ = \,& 2c_{1}B_{\xi\tau}+3c_{2}b_{1}B_{\xi}B_{\xi\xi}+2c_{3}b_{2}B_{\xi\xi\xi\xi}\\ & +2c_{4}b_{3}B_{\eta\eta} = 0,\end{split} $(19)

    View in Article

    $ c_{1} = \frac{1}{2},\; \; c_{2} = \frac{1}{3},\; \; c_{3} = \frac{1}{2},\; \; c_{4} = \frac{1}{2}. $(20)

    View in Article

    $\begin{split} L(B_{\tau},B_{\xi},B_{\eta},B_{\xi\xi}) & = -\frac{1}{2}B_{\tau}B_{\xi} -\frac{1}{6}b_{1}(B_{\xi})^{3} \\ & +\frac{1}{2}b_{2}(B_{\xi\xi})^{2} \!-\! \frac{1}{2}b_{3}(B_{\eta})^{2}, \end{split}$(21)

    View in Article

    $ \begin{split} & F(D_\tau ^\omega B,D_\xi ^\alpha B,D_\eta ^\beta B,D_\xi ^{\alpha \alpha }B) \\=\, & - \frac{1}{2}D_\tau ^\omega BD_\xi ^\alpha B - \frac{1}{6}{a_1}{{(D_\xi ^\alpha B)}^3}\\ & + \frac{1}{2}{a_2}{{(D_\xi ^{\alpha \alpha }B)}^2} - \frac{1}{2}{a_3}{{(D_\eta ^\beta B)}^2}, \end{split}$(22)

    View in Article

    $\begin{split} J_{F}(B) =\, & \iint\nolimits_{R} ({\rm{d}}\xi)^{\alpha} ({\rm{d}}\eta)^{\beta} \int_{T} ({\rm{d}}\tau)^{\omega} \\ &\times F(D_{\tau}^{\omega}B,D_{\xi}^{\alpha}B,D_{\eta}^{\beta}B, D_{\xi}^{\alpha\alpha}B). \end{split} $(23)

    View in Article

    $ \begin{split} \delta {J_F}(B) =\, & \int_R {{{({\rm{d}}\xi )}^\alpha }} \int_R {{{({\rm{d}}\eta )}^\alpha }} \int_T {{{({\rm{d}}\tau )}^\omega }} \\ & \times\left[ {\left( {\frac{{\partial F}}{{\partial D_\tau ^\omega B}}} \right)\delta D_\tau ^\omega B + \left( {\frac{{\partial F}}{{\partial D_\xi ^\alpha B}}} \right)\delta D_\xi ^\alpha B} \right.\\ & \left. { + \left( {\frac{{\partial F}}{{\partial D_\xi ^{\alpha \alpha }B}}} \right)\delta D_\xi ^{\alpha \alpha } + \left( {\frac{{\partial F}}{{\partial D_\eta ^\beta B}}} \right)\delta D_\eta ^\beta B} \right], \end{split} $(24)

    View in Article

    $ \int_{a}^{T}({\rm{d}}\tau)^{j}f(\tau) = j\int_{a}^{T}({\rm{d}}\tau)(T-\tau)^{j}f(\tau). $(25)

    View in Article

    $\begin{split} & \int_{a}^{b}({\rm{d}}\tau)^{i}f(x)D_{x}^{i}g(x) =\varGamma(1+i)[g(x)f(x)|_{a}^{b}\\ & \quad\quad\quad\quad\quad\quad\quad\quad -\int_{a}^{b}({\rm{d}}x)^{i}g(x)D_{x}^{i}f(i)],\\ & f(x),g(x)\in[a,b]. \end{split} $(26)

    View in Article

    $ \begin{split} \delta J_{F}(B) =\, &\, \int_{R}({\rm{d}}\xi)^{\alpha}\int_{R}({\rm{d}}\eta)^{\alpha}\int_{T}({\rm{d}}\tau)^{\omega} \\& \times\left[ {-D_{\tau}^{\omega}\left( {\frac{\partial F}{\partial D_{\tau}^{\omega}B}} \right)-D_{\xi}^{\alpha}\left( {\frac{\partial F}{\partial D_{\xi}^{\alpha}B}} \right) }\right.\\ &\left. {-D_{\eta}^{\beta}\left( {\frac{\partial F}{\partial D_{\eta}^{\beta}B}} \right)+D_{\xi}^{\alpha\alpha}\left( {\frac{\partial F}{\partial D_{\xi}^{\alpha\alpha}B}} \right)} \right].\end{split} $(27)

    View in Article

    $\begin{split} & -D_{\tau}^{\omega}\left( {\frac{\partial F}{\partial D_{\tau}^{\omega}B}} \right)-D_{\xi}^{\alpha}\left( {\frac{\partial F}{\partial D_{\xi}^{\alpha}B}} \right) \\ & -D_{\eta}^{\beta}\left( {\frac{\partial F}{\partial D_{\eta}^{\beta}B}} \right)+D_{\xi}^{\alpha\alpha}\left( {\frac{\partial F}{\partial D_{\xi}^{\alpha\alpha}B}} \right) = 0. \end{split}$(28)

    View in Article

    $ \begin{split} \, & D_{\tau}^{\omega}D_{\xi}^{\alpha}B +b_{1}(D_{\xi}^{\alpha}B)D_{\xi}^{\alpha\alpha}B+b_{2}D_{\xi}^{\alpha\alpha\alpha\alpha}B \\ &~~ +b_{3}D_{\eta}^{\beta\beta}B = 0. \end{split} $(29)

    View in Article

    $ D_{\tau}^{\omega}A+b_{1}AD_{\xi}^{\alpha}A+b_{2}D_{\xi}^{\alpha\alpha\alpha}A+\int b_{3}D_{\eta}^{\beta\beta}A({\rm{d}}\xi)^{\alpha} = 0.$(30)

    View in Article

    $D_{\xi}^{\alpha}(D_{\tau}^{\omega}A+b_{1}AD_{\xi}^{\alpha}A+b_{2}D_{\xi}^{\alpha\alpha\alpha}A) +b_{3}D_{\eta}^{\beta\beta}A = 0. $(31)

    View in Article

    $ D_{\tau}^{\omega}A+b_{1}A\frac{\partial A}{\partial \xi}+b_{2}\frac{\partial ^{3}A}{\partial \xi^{3}} +b_{3}D^{-1}\left( {\frac{\partial ^{2}A}{\partial \eta^{2}}} \right) = 0. $(32)

    View in Article

    $ \begin{split} D_{\tau}^{\gamma}A ={}& Q(\xi, \eta, \tau, A, A_{\xi}, A_{\xi\xi\xi}, D_{\tau}^{\omega}A, A_{\eta\eta}, \cdots), \\ & \omega \!>\! 0.\\ \end{split} $(33)

    View in Article

    $ \left\{ \begin{aligned}& \overline{\xi} = \xi+\varepsilon X(\xi,\eta,\zeta,\tau,A)+O(\varepsilon ^{2}),\\ & \overline{\eta} = \eta+\varepsilon Y(\xi,\eta,\zeta,\tau,A)+O(\varepsilon ^{2}),\\ & \overline{\tau} = \tau+\varepsilon T(\xi,\eta,\zeta,\tau,A)+O(\varepsilon ^{2}),\\ & \overline{A} = A+\varepsilon \psi(\xi,\eta,\zeta,\tau,A)+O(\varepsilon ^{2}),\\ & D_{\tau}^{\omega}\overline{A}\rightarrow D_{\tau}^{\omega}A+\varepsilon \psi_{\omega}^{\tau}+O(\varepsilon ^{2}),\\ & \frac{\partial \overline{A}}{\partial \xi}\rightarrow \frac{\partial A}{\partial \xi}+\varepsilon \psi_{\xi}+O(\varepsilon ^{2}),\\ & \frac{\partial ^{3}\overline{A}}{\partial \xi^{3}}\rightarrow \frac{\partial ^{3}A}{\partial \xi^{3}}+\varepsilon \psi_{\xi\xi\xi}+O(\varepsilon ^{2}),\\ & \frac{\partial ^{2}\overline{A}}{\partial \eta^{2}}\rightarrow \frac{\partial ^{2}A}{\partial \eta^{2}}+\varepsilon \psi_{\eta\eta}+O(\varepsilon ^{2}), \end{aligned} \right. $(34)

    View in Article

    $ \left\{\begin{aligned} \psi_{\omega}^{\tau} =\, & D_{\tau}^{\omega}(\psi)+X D_{\tau}^{\omega}(A_{\xi})-D_{\tau}^{\omega}(X A_{\xi})\\ &+Y D_{\tau}^{\omega}(A_{\eta})-D_{\tau}^{\omega}(Y A_{\eta}) \\ & +D_{\tau}^{\omega}(D_{\tau}(T)A)-D_{\tau}^{\gamma+1}(T A) \\ &+T D_{\tau}^{\gamma+1}(A),\\ \psi_{\xi} =\, & D_{\xi}(\psi)-A_{\xi}D_{\xi}(X)-A_{\eta}D_{\xi}(Y) \\ & -A_{\tau}D_{\xi}(T),\\ \psi_{\xi\xi\xi} =\, & D_{\xi}(\psi^{\xi\xi})-A_{\xi\xi\xi}D_{\xi}(X)-A_{\xi\xi\eta}D_{\xi}(Y) \\ & -A_{\xi\xi\tau}D_{\xi}(T),\\ \psi_{\eta\eta} =\, & D_{\eta}(\psi^{\eta})-A_{\xi\eta}D_{\eta}(X)-A_{\eta\eta}D_{\eta}(Y) \\ & -A_{\eta\tau}D_{\eta}(T), \end{aligned} \right. $(35)

    View in Article

    $ \left\{\begin{aligned} {D_\tau} =\, & \frac{\partial}{{\partial \tau}} + {A_{\tau}}\frac{\partial}{{\partial \tau}} + {A_{\tau\tau}}\frac{\partial}{\partial {A_{\tau}}}+{A_{\xi\tau}}\frac{\partial}{{\partial {A_\xi}}}\\ &+{A_{\eta\tau}}\frac{\partial}{{\partial {A_\eta}}}+{A_{\zeta\tau}}\frac{\partial}{{\partial {A_\zeta}}} + \cdots,\\ {D_\xi} =\, & \frac{\partial}{{\partial \xi}} + {A_\xi}\frac{\partial}{{\partial A}} + {A_{\xi\xi}}\frac{\partial}{{\partial {A_\xi}}} + {A_{\tau\xi}}\frac{\partial}{{\partial {A_\tau}}} \\ &+ {A_{\eta\xi}}\frac{\partial}{{\partial {A_\eta}}}+ {A_{\zeta\xi}}\frac{\partial}{{\partial {A_\zeta}}} + \cdots, \\ {D_\eta} =\, & \frac{\partial}{{\partial \eta}} + {A_\eta}\frac{\partial}{{\partial A}} + {A_{\eta\eta}}\frac{\partial}{{\partial {A_\eta}}} + {A_{\tau\eta}}\frac{\partial}{{\partial {A_\tau}}} \\ &+ {A_{\xi\eta}}\frac{\partial}{{\partial {A_\xi}}}+ {A_{\zeta\eta}}\frac{\partial}{{\partial {A_\zeta}}} + \cdots. \end{aligned}\right. $(36)

    View in Article

    $D_T^\omega (f(t)g(t)) = \sum\limits_{n = 0}^\infty \left( {\begin{aligned} \omega \\ n \end{aligned}} \right) D_t^{\omega - n}f(t)D_t^ng(t),\; \omega > 0,$(37)

    View in Article

    $ \left( {\begin{aligned} \omega \\ n \end{aligned}} \right)= \frac{(-1)^{n-1}\omega\varGamma(n-\omega)} {\varGamma(1-\omega)\varGamma(n+1)},\\ $(38)

    View in Article

    $ \begin{split} \psi_{\omega}^{\tau} \!=\! \,& D_{\tau}^{\omega}(\psi) \!-\! \omega D_{\tau}^{\omega}(T)\frac{\partial^{\omega}A}{\partial \tau^{\omega}} \!-\! \sum\limits_{n = 1}^{\infty}\left( {\begin{aligned} \omega \\ n \end{aligned}} \right)D_{\tau}^{n}(X)D_{\tau}^{\omega-n}A_{\xi}\\ & -\sum\limits_{n = 1}^{\infty}\left( {\begin{aligned} \omega \\ n \end{aligned}} \right)D_{\tau}^{n}(Y) D_{\tau}^{\omega-n}A_{\eta}\\ &-\sum\limits_{n = 1}^{\infty}\left( {\begin{aligned} \omega\;\;\; \\ {n+1} \end{aligned}} \right) D_{\tau}^{n+1}(T)D_{\tau}^{\omega-n}A.\\[-17pt] \end{split} $(39)

    View in Article

    $ \frac{{\rm{d}}^{m}f(g(t))}{{\rm d}t^{m}} = \sum\limits_{k = 0}^{m}\sum\limits_{r = 0}^{k}\left( \begin{aligned} k \\ r\end{aligned} \right)\frac{1}{k!}[-g(t)^{k-r}]\frac{{\rm d}^{k}f(g(t))}{{\rm{d}}t^{k}},$(40)

    View in Article

    $\begin{split} D_{\tau}^{\omega}\psi =\, & \frac{\partial^{\omega}\psi}{\partial \tau^{\omega}}+\psi_{A}\frac{\partial^{\omega}A}{\partial \tau^{\omega}}-A\frac{\partial^{\omega}\psi_{A}}{\partial \tau^{\omega}}\\ &+\sum\limits_{n = 1}^{\infty}\left( {\begin{aligned} \omega \\ n \end{aligned}} \right) \frac{\partial^{n}\psi_{A}}{\partial \tau^{n}}D_{\tau}^{\omega-n}A+Ra, \end{split}$(41)

    View in Article

    $ \begin{split} \, & Ra = \sum\limits_{n = 2}^{\infty}\sum\limits_{m = 2}^{n}\sum\limits_{k = 2}^{m} \sum\limits_{r = 0}^{k-1}\left[\left( {\begin{aligned} \omega \\ n \end{aligned}} \right)\left( {\begin{aligned} n\\ m \end{aligned}} \right)\left( {\begin{aligned} k\\ r \end{aligned}} \right)\right.\frac{1}{k!}\\ & \left.\!\! \! \times\frac{\tau^{n-\omega}}{\varGamma(n \!+\! 1 \!-\! \omega)}(-A)^{r}\frac{\partial^{A}}{\partial \tau^{A}}(A)^{k-r} \frac{\partial^{n-m+k} \psi}{\partial \tau^{n-m}\partial A^{k}} \right]. \end{split}$(42)

    View in Article

    $ \begin{split} \psi_{\omega}^{\tau} = \, & \frac{\partial^{\omega}\psi}{\partial \tau^{\omega}}+(\psi_{A}-\omega D_{\tau}(T))\frac{\partial^{\omega}A}{\partial \tau^{\omega}}-A\frac{\partial^{\omega}\psi_{A}}{\partial \tau^{\omega}}\\ &+\sum\limits_{n = 1}^{\infty}\left[ { \left( {\begin{aligned} \omega \\ n \end{aligned}} \right) \frac{\partial^{\omega}\psi_{A}}{\partial \tau^{\omega}}- \!\left( {\begin{aligned} \omega\;\;\; \\ {n+1} \end{aligned}} \right) D_{\tau}^{n+1}(T)} \right]\! D_{\tau}^{\omega-n}A \\ &-\sum\limits_{n = 1}^{\infty} \left( {\begin{aligned} \omega \\ n \end{aligned}} \right) [D_{\tau}^{n}(X)D_{\tau}^{\omega-n}(A_{\xi})\\ &+D_{\tau}^{n}(Y)D_{\tau}^{\omega-n}(A_{\eta})]+Ra. \\[-17pt]\end{split} $(43)

    View in Article

    $ M = X\frac{\partial}{\partial \xi}+Y\frac{\partial}{\partial \eta}+T\frac{\partial}{\partial \tau}+\psi\frac{\partial}{\partial A}.\\ $(44)

    View in Article

    $ \left\{ \begin{aligned} & Pr^{(n)}M(\varDelta)|_{\varDelta = 0} = 0,\qquad n = 1,2,3,\cdots,\\ & \varDelta = D_{\tau}^{\omega}A+a_{1}A\frac {\partial A}{\partial \xi}+a_{2}\frac {\partial ^{3}A}{\partial \xi^{3}}+a_{3}D^{-1} \left( {\frac {\partial ^{2}A}{\partial \eta^{2}}} \right). \end{aligned} \right. $(45)

    View in Article

    $\begin{split} Pr^{(4)} M(\varDelta) =\, & T\frac{\partial^{\omega}}{\partial \tau^{\omega}}+X\frac{\partial}{\partial \xi}+Y\frac{\partial}{\partial \eta}+\psi\frac{\partial}{\partial A}\\ &+\psi_{\tau}^{\omega}\frac{\partial}{\partial D_{\tau}^{\gamma}A} +\psi_{\xi}\frac{\partial}{\partial A_{\xi}}\\ &+\psi_{\xi\xi\xi}\frac{\partial}{\partial A_{\xi\xi\xi}}+\psi_{\eta\eta}\frac{\partial}{\partial A_{\eta\eta}}. \end{split} $(46)

    View in Article

    $ \psi_{\omega}^{\tau}+a_{1}\psi\frac{\partial}{\partial \xi}+a_{1}\psi_{\xi}A+a_{2}\psi_{\xi\xi\xi}+a_{3}D^{-1}(\psi_{\eta\eta}) = 0.\\ $(47)

    View in Article

    $ \left\{ \begin{aligned} & \left(\begin{aligned} \omega \\ n \end{aligned} \right) \frac{\partial^{\omega}\psi_{A}}{\partial \tau^{\omega}}- \left( {\begin{aligned} \omega\quad \\ {n+1} \end{aligned}} \right) D_{\tau}^{n+1}(\tau) = 0,\\ & X_{A} = X_{\tau} = 0,\\ & Y_{A} = Y_{\tau} = Y_{\xi} = 0,\\& \psi_{A}-\omega T_{\tau} = 0,\\ &\psi_{A}-a_{1}X_{\xi} = 0,\\ & \psi_{A}-a_{1}Y_{\eta} = 0. \end{aligned} \right. $(48)

    View in Article

    $ \left\{ \begin{aligned} & \psi = c_{1}A, ~~ X = \frac{c_{1}\xi}{a_{1}}+c_{2},\\ & Y = \frac{c_{1}\eta}{a_{3}}+c_{3},~~ T = \frac{c_{1}\tau}{\omega}+c_{5}. \end{aligned} \right. $(49)

    View in Article

    $ \left\{ \begin{aligned} & M_{1} = \frac{\partial}{\partial \tau},~~ M_{2} = \frac{\partial}{\partial \xi},~~M_{3} = \frac{\partial}{\partial \eta},\\ & M_{5} = \frac{\xi}{a_{1}}\frac{\partial}{\partial \xi}+\frac{\eta}{a_{3}}\frac{\partial}{\partial \eta}+\frac{\tau}{\omega}\frac{\partial}{\partial \tau}-A\frac{\partial}{\partial A}. \end{aligned} \right. $(50)

    View in Article

    $ D_{\tau}(C^{\tau})+D_{\xi}(C^{\xi})+D_{\eta}(C^{\eta}) = 0.\\ $(51)

    View in Article

    $\begin{split} L =\, & s(\xi, \eta, \tau)\left[D_{\tau}^{\omega}A+a_{1}A\frac{\partial A}{\partial \xi}+a_{2}\frac{\partial ^{3}A}{\partial \xi^{3}}\right.\\ & \left.+a_{3}D^{-1}\left( {\frac{\partial ^{2}A}{\partial \eta^{2}}} \right)\right],\end{split}$(52)

    View in Article

    $ \int_{R}\int_{R}\int_{T}L(\xi, \eta, \tau, D_{\tau}^{\omega}A, A_{\xi}, A_{\xi\xi\xi}, A_{\eta\eta}){\rm{d}}\xi {\rm{d}}\eta {\rm{d}}\tau,\\ $(53)

    View in Article

    $ \begin{split} \frac{\delta}{\delta A} =\, &\frac{\partial}{\partial A}+(D_{\tau}^{\omega})^{*}\frac{\partial}{\partial D_{\tau}^{\omega}A}+D_{\xi}\frac{\partial}{\partial A_{\xi}}\\ &-D^{3}_{\xi}\frac{\partial}{\partial A_{\xi\xi\xi}}-D^{2}_{\eta}\frac{\partial}{\partial A_{\eta\eta}}. \end{split} $(54)

    View in Article

    $ (D_{\tau}^{\omega})^{*} = (-1)^{n}I_{p}^{n-\omega}(D_{\tau}^{n}) = {}_{\tau}^{C}D_{p}^{\omega}, $(55)

    View in Article

    $ F^{*} = \frac{\delta L}{\delta A} = 0. $(56)

    View in Article

    $ \begin{split} F^{*} = \, & a_{1}A_{\xi}+(D_{\tau}^{\omega})^{*}s-a_{1}D_{\xi}(As)\\ &-a_{2}D_{\xi}^{3}s-a_{3}D^{-1}(D_{\eta}^{2}s). \end{split}$(57)

    View in Article

    $ W = \psi-T A_{\tau}-X A_{\xi}-Y A_{\eta}. $(58)

    View in Article

    $ \left\{\begin{aligned} & W_{1} = -A_{\xi},\\ & W_{2} = -A_{\eta},\\ & W_{4} = -A_{\tau},\\ & W_{5} = -A-\frac{\xi}{a_{1}}A_{\xi}-\frac{\eta}{a_{3}}A_{\eta} -\frac{\tau}{\omega}A_{\tau}. \end{aligned} \right. $(59)

    View in Article

    $ \begin{aligned} C^{\tau} =\, & T L+\sum\limits_{k = 0}^{n-1}(-1)^{k}_{0}D_{T}^{\omega-1-k}(W_{i})D_{\tau}^{k}\frac{\partial L}{\partial(_{0}D_{\tau}^{\omega}A)} \\ & -(-1)^{n}J\left( {W_{i},D_{\tau}^{n}\frac{\partial L}{\partial(_{0}D_{\tau}^{\omega}A)}} \right).\end{aligned} $(60)

    View in Article

    $ J(a,b) \!=\! \frac{1}{\varGamma(n \!-\! \omega)}\int_{0}\int_{\tau} \frac{f(T,\xi,\eta,\zeta)g(\mu,\xi,\eta,\zeta)}{(\mu-T)^{\omega+1-n}} {\rm{d}}\mu {\rm{d}}T. $(61)

    View in Article

    $ \begin{split} C^{i} =\, & \rho^{i}L+W_{\gamma}\left[\frac{\partial L}{\partial A_{i}}-D_{i}\left( {\frac{\partial L}{\partial A_{ij}}} \right)\right.\\ & \left.+D_{i}D_{k}\left( {\frac{\partial L}{\partial A_{ijk}}} \right)-\cdots \right]\\ &+D_{j}(W_{\gamma})\left( {\frac{\partial L}{\partial A_{ij}}-D_{k}\frac{\partial L}{\partial A_{ijk}}+\cdots} \right)\\ & +D_{j}D_{k}(W_{\gamma})\left( {\frac{\partial L}{\partial A_{ijk}}-\cdots} \right)+\cdots, \end{split} $(62)

    View in Article

    $ \left\{\begin{aligned} C^{\tau} \, &= TL+_{0}D_{T}^{\omega-1}(W_{5})\frac{\partial L}{\partial _{0}D_{\tau}^{\gamma}A} \!+\! J\Big(\!{W_{5},D_{\tau}\frac{\partial L}{\partial D_{\tau}^{\gamma}A}}\!\Big), \\ &= s_{0}D_{\tau}^{\omega-1}(W_{5})+J(W_{5},s_{\tau}), \\ C^{1} \, & = XL+W_{5}\left[ {\frac{\partial L}{\partial A_{\xi}}+D_{\xi}D_{\xi}\Big( {\frac{\partial L}{\partial A_{\xi\xi\xi}}} \Big)} \right]\\ &\;\;\;+D_{\xi}(W_{5})\left[ {-D_{\xi}\Big( {\frac{\partial L}{\partial A_{\xi\xi\xi}}} \Big)} \right],\\ C^{2} \, & = YL\!+\!W_{5}\left[ {-D_{\eta}\Big( {\frac{\partial L}{\partial A_{\eta\eta}}} \Big)} \right]\!+\!D_{\eta}(W_{5})\Big( \!{\frac{\partial L}{\partial A_{\eta\eta}}}\! \Big). \end{aligned} \right. $(63)

    View in Article

    $ \left\{ \begin{aligned} C^{\tau} =\,& {}s_{0}D_{\tau}^{\omega-1}\Big( {-A-\frac{\xi}{a_{1}}A_{\xi}\!-\!\frac{\eta} {a_{3}}A_{\eta}\!-\!\frac{\zeta}{a_{3}}A_{\zeta}-\frac{\tau}{\omega}A_{\tau}} \Big)\\ &+J\!\left[ {\Big( {\!-\!A\!-\!\frac{\xi}{a_{1}}A_{\xi}\!-\!\frac{\eta}{a_{3}}A_{\eta}\!-\!\frac{\zeta}{a_{3}} A_{\zeta}\!-\!\frac{\tau}{\omega}A_{\tau}} \Big),s_{\tau}} \right],\\ C^{1} =\,& XL+ \Big( {-A-\frac{\xi}{a_{1}}A_{\xi}-\frac{\eta}{a_{3}} A_{\eta}-\frac{\zeta}{a_{3}}A_{\zeta} -\frac{\tau}{\omega}A_{\tau}} \Big)\\ & \times\left[ {\frac{\partial L}{\partial A_{\xi}}+D_{\xi}D_{\xi}\Big( {\frac{\partial L}{\partial A_{\xi\xi\xi}}} \Big)} \right]\\ &+D_{\xi}\Big( {-A-\frac{\xi}{a_{1}}A_{\xi}-\frac{\eta}{a_{3}}A_{\eta} -\frac{\zeta}{a_{3}}A_{\zeta}-\frac{\tau}{\omega}A_{\tau}} \Big)\\ & \times \left[ {-D_{\xi}\Big( {\frac{\partial L}{\partial A_{\xi\xi\xi}}} \Big)} \right],\\ C^{2} =\, & YL+ \Big( {-A-\frac{\xi}{a_{1}}A_{\xi}-\frac{\eta}{a_{3}}A_{\eta}- \frac{\zeta}{a_{3}}A_{\zeta}-\frac{\tau}{\omega}A_{\tau}} \Big) \\ & \times\left[ {-D_{\eta}\Big( {\frac{\partial L}{\partial A_{\eta\eta}}} \Big)} \right]\\ &+D_{\eta}\Big( {-A-\frac{\xi}{a_{1}}A_{\xi}-\frac{\eta}{a_{3}}A_{\eta} -\frac{\zeta}{a_{3}}A_{\zeta}-\frac{\tau}{\omega}A_{\tau}} \Big)\\ & \times\Big( {\frac{\partial L}{\partial A_{\eta\eta}}} \Big). \end{aligned} \right. $(64)

    View in Article

    $\begin{split} D_{x}^{n}(a,b)\, &\equiv \left( {\frac{\partial}{\partial x}-\frac{\partial}{\partial y}} \right)^{n}a(x)b(y)\mid_{y = x} \\ &= \frac{\partial^{n}}{\partial y^{n}}a(x+y)b(x-y)\mid_{y = 0},\end{split}$(65)

    View in Article

    $\begin{split}& D_{t}^{m}D_{x}^{n}(a,b)\\ \equiv &\frac{\partial^{m}}{\partial s^{m}}\frac{\partial^{n}}{\partial y^{n}} a(t\!+\!s,x\!+\!y)b(t\!-\!s,x\!-\!y)\mid_{s = 0,y = 0}. \end{split}$(66)

    View in Article

    $ \left\{\begin{aligned} & D_{x}^{2}(f\cdot f) = 2f_{xx}f-2(f_{x})^{2},\\ & D_{x}D_{t}(f\cdot f) = 2f_{xt}f-2f_{x}f_{t},\\ & D_{x}^{4}(f\cdot f) = 2f_{xxxx}f-8f_{xxx}f_{x}+6(f_{xx})^{2}. \end{aligned}\right. $(67)

    View in Article

    $ \left.\begin{aligned}& T \!=\! \frac{p_{1}\tau^{\omega}}{\varGamma(1+\omega)},~ X \!=\! \frac{p_{2}\xi^{\alpha}}{\varGamma(1+\alpha)},~ Y \!=\! \frac{p_{3}\eta^{\beta}}{\varGamma(1+\beta)}, \end{aligned}\right. $(68)

    View in Article

    $ \left.\begin{aligned} & \frac{\partial^{\omega} A}{\partial \tau^{\omega}} = p_{1}\frac{\partial A}{\partial T},~ \frac{\partial^{\alpha} A}{\partial \xi^{\alpha}} = p_{2}\frac{\partial A}{\partial X},~ \frac{\partial^{\beta} A}{\partial \eta^{\beta}} = p_{3}\frac{\partial A}{\partial Y}, \end{aligned}\right. $(69)

    View in Article

    $ \frac{\partial}{\partial \xi}\left( {\frac{\partial A}{\partial T}+b_{1}A\frac{\partial A}{\partial X}+b_{2}\frac{\partial ^{3}A}{\partial ^{3}X}} \right)+b_{3}\frac{\partial ^{2}A}{\partial ^{2}Y} = 0. $(70)

    View in Article

    $ A = R(\ln f)_{XX}, $(71)

    View in Article

    $ R = {12b_{2}}/{b_{1}}, $(72)

    View in Article

    $ (D_{X}D_{T}+b_{2}{D_{X}^{4}}+b_{3}D_{Y}^{2})(f\cdot f) = 0, $(73)

    View in Article

    $ \begin{split}&(D_{X}D_{T}+b_{2}{D_{X}^{4}}+b_{3}D_{Y}^{2})(f\cdot f)\\ =\, & 2f_{XT}f-2f_{X}f_{T}+b_{2}(2f_{XXXX}f-8f_{XXX}f_{X}\\ & +6f_{XX}^{2})+b_{3}(2f_{YY}f-2f_{Y}^{2}),\\[-15pt] \end{split} $(74)

    View in Article

    $\begin{split} & f = m^{2}+n^{2}+a_{9}, m = a_{1}X+a_{2}Y+a_{3}T+a_{4}, \\ & n = a_{5}X+a_{6}Y+a_{7}T+a_{8}. \\[-15pt]\end{split}$(75)

    View in Article

    $ \left\{\begin{aligned} & a_{3} = -\frac{b_{3}\left(a_{1}a_{2}^{2}-a_{1}a_{6}^{2}+2a_{2}a_{5}a_{6}\right)}{a_{1}^{2}+a_{5}^{2}},\\ & a_{7} = -\frac{b_{3}\left(a_{5}a_{6}^{2}-a_{5}a_{2}^{2}+2a_{1}a_{2}a_{6}\right)}{a_{1}^{2}+a_{5}^{2}},\\ & a_{9} = -\frac{3b_{2}\left(a_{1}^{2}+a_{5}^{2}\right)^{3}}{b_{3}\left(a_{1}a_{6}-a_{2}a_{5}\right)^{2}}, \end{aligned} \right. $(76)

    View in Article

    $ a_{1}a_{5}\neq0,~~ a_{1}a_{6}-a_{2}a_{5}\neq0. $(77)

    View in Article

    $ \begin{split} A =\, &\frac{12b_{2}}{b_{1}}\left\{ {\frac{2a_{1}^{2}+2a_{5}^{2}}{(a_{1}X+a_{2}Y+a_{3}T+a_{4})^{2}+(a_{5}X+a_{6}Y+a_{7}T+a_{8})^{2}+a_{9}}}\right.\\ &\left. { -\frac{[2a_{1}(a_{1}X+a_{2}Y+a_{3}T+a_{4})+2a_{5}(a_{5}X+a_{6}Y+a_{7}T+a_{8})]^{2}}{[(a_{1}X+a_{2}Y+a_{3}T+a_{4})^{2}+(a_{5}X+a_{6}Y+a_{7}T+a_{8})^{2}+a_{9}]^{2}}} \right\}, \end{split} $(78)

    View in Article

    $ \left.\begin{aligned} &T \!=\! \frac{p_{1}\tau^{\omega}}{\varGamma(1\!+\!\omega)},~X \!=\! \frac{p_{2}\xi^{\alpha}}{\varGamma(1\!+\!\alpha)},~ Y \!=\! \frac{p_{3}\eta^{\beta}}{\varGamma(1\!+\!\beta)}. \end{aligned}\right. $(79)

    View in Article

    Jun-Chao Sun, Zong-Guo Zhang, Huan-He Dong, Hong-Wei Yang. Fractional order model and Lump solution in dusty plasma[J]. Acta Physica Sinica, 2019, 68(21): 210201-1
    Download Citation