• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 121404 (2017)
Li Long, Pan Xiaorui*, and Geng Yingge
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.121404 Cite this Article Set citation alerts
    Li Long, Pan Xiaorui, Geng Yingge. Temperature Field of Nd∶YAG Microchip Heat Capacity Laser End-Pumped by LD[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121404 Copy Citation Text show less
    References

    [1] Xu Fanghua, Wang Zhengping, Zhang Huaijin, et al. Study on the properties of LD-pumped Nd∶LuV04 microchip laser[J]. Acta Physica Sinica, 2007, 56(7): 3950-3954.

    [2] Yang Lin, Dong Jun. Progress in laser ignition based on passively Q-switched solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030007.

    [3] Xia Kegui, Li Jianlang. Recent development in radially polarized solid-state laser with composite laser crystal[J]. Laser & Optoelectronics Progress. 2013, 50(8): 080015.

    [4] Zhang Yongqin, Zhang Song, Deng Yong, et al. Nd∶YAG microchip laser feedback interferometer[J]. Chinese J Lasers, 2013, 40(3): 0302002.

    [5] Li Menglong, Meng Peibei, Yan Fanjiang, et al. Progress on passively Q-switched solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090001.

    [6] Guo Jiawei, Jia Kai, Yang Feng, et al. Study of jet cooling on disk laser[J]. High Power Laser and Particle Beams, 2014, 26(1): 22-26

    [7] Liu Yang, Wang Chao, Tang Xiaojun, et al. Study of laser diode-pumped Nd∶YAG disk laser[J]. Laser & Infrared, 2011, 41(12): 1306-1309.

    [8] Baumgardner D, Spowart M. Evaluation of the forward scattering spectrometer probe. Part III, time response and laser inhomogeneity limitations[J]. Journal of Atmosphere and Oceanic Technology, 1990, 7: 666-672.

    [9] Nagel D, Maixner U, Strapp W, et al. Advancements in techniques for calibration and characterization of in situ optical particle measuring probes, and applications to the FSSP-100 probe[J]. Journal of Atmosphere and Oceanic Technology, 2007, 24(5): 745-760.

    [10] Tian Yubing, Tan Huiming, Wang Fan. A compact efficient intra-cavity frequency doubled Yb∶YAG/BIBO515 nm thin disc laser[J]. Chinese J Lasers, 2013, 40(6): 0602021.

    [11] Lack G A, Oliver D W. Thermal conductivity of garnets and phonon scattering by rare-earth ions.[J]. Phys Rev B,1971, 5(4): 592-609.

    [12] Shi Peng, Li Jinping, Li Long, et al. Influence of pump light distribution on thermal effects within Nd∶YAG microchip laser[J]. Chinese J Lasers, 2008, 35(5): 643-646

    [13] Dai Qin, Wu Rina, Ning Ribo, et al. Analysis of thermal effect of solid state lasers in heat capacity mode[J]. Optics and Precision Engineering, 2008, 16(6): 1025-1030.

    [14] Gerber M, Kudryashov A V, Graf T. Intracavity beam shaping of a Nd∶YAG laser[C]. SPIE, 2002, 4629: 58-66

    [15] Cao Dingxiang, Zheng Wanguo, He Shaobo, et al. Finite element analysis on thermal effect of heat capacity laser disk[J]. High Power Laser and Particle Beams, 2006, 18(9): 1417-1422.

    [16] Wang Baosong, Jiang Haihe, Jia Xiande, et al. Study on thermal conductivity of the YAG and GGG laser crystal[J]. Chinese J Lasers, 2007, 31(2): 141-143.

    [17] Cao Yi, Liu Jia, Liu Jiang, et al. Passively Q-switched Nd∶YAG microchip laser based on graphene[J]. Chinese J Lasers, 2012, 39(2): 0202009.

    [18] Ferrari A C. Graphene photonics and optoelectronics[J]. Nature Photonics, 2016, 4(9): 611-622.

    [19] Yu H, Chen X, Hu X, et al. Graphene as a Q-switcher for neodymium-doped lutetium vanadate laser[J]. Applied Physics Express, 2011, 4(2): 407-416.

    [20] Blows J L, Dawes J M, Piper J A. A simple, thermally-stabilized, diode end-pumped, planar Nd∶YAG laser[J]. Optics Communications, 1999, 162(4/6): 247-250.

    [21] Qu Pengfei, Wang Shiyu, Guo Zhen, et al. Composite application technology of Nd∶YAG and Nd∶YVO4 crystal in end pumped solid-state laser[J]. Acta Optica Sinica, 2016, 36(7): 0714002.

    Li Long, Pan Xiaorui, Geng Yingge. Temperature Field of Nd∶YAG Microchip Heat Capacity Laser End-Pumped by LD[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121404
    Download Citation