• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 1, 1750012 (2018)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]2, [in Chinese]2, [in Chinese]3, [in Chinese]1、*, and [in Chinese]
Author Affiliations
  • 1Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, P. R. China
  • 2Zhejiang BrainHealth Medical Technology Co. Ltd 332 Wangjiang Road, Hangzhou 310002, P. R. China
  • 3Department of Neurosurgery General Hospital of PLA 28 Fuxing Road, Beijing 100853, P. R. China
  • show less
    DOI: 10.1142/s1793545817500122 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Near infra-red light treatment of Alzheimer's disease[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750012 Copy Citation Text show less
    References

    [1] A. Burns, S. Iliffe, “Alzheimer's disease", BMJ Clin. Res. ed. 338, b158 (2009).

    [2] J. Hardy, D. Allsop, “Amyloid deposition as the central event in the aetiology of Alzheimer's disease," Trends Pharmacol. Sci. 12, 383-388 (1991).

    [3] Karen H., P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. S. Yang, G. Cole, “Correlative memory deficits, A elevation, and amyloid plaques in transgenic Mice," Science 274 (5284), 99-103 (1996).

    [4] T. Pan, M. M. Li, J. M. Chen, H. Y. Xue, “Quantification of glycated hemoglobin indicator HbA1c through near-infrared spectroscopy," J. Innov. Opt. Health Sci. 7(4), 1350060 (2014).

    [5] X. Zhang, Y. Q. Gu, H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging," J. Innov. Opt. Health Sci. 7(3), 1350059 (2014).

    [6] K. A. Kang, “Britton Chance's lab and thereafter: From NIR spectroscopy to molecular sensing via nanotechnology", J. Innov. Opt. Health Sci. 7(2), 1330004 (2014).

    [7] M. A. Yucel, J. Selb, R. J. Cooper, D. A. Boas, “Targeted principle component analysis: A new motion artifact correction approach for near-infrared spectroscopy," J. Innov. Opt. Health Sci. 7(2), 1350066 (2014).

    [8] Y. F. Di, S. S. Cui., Y. Q. Gu, “Preparation and characterization of a near-infrared light responsive microcapsule system for cancer therapy," J. Innov. Opt. Health Sci. 7(1), 1350037 (2014).

    [9] J. T. Eells, M. T. Wong-Riley, J. VerHoeve, M. Henry, E. V. Buchman, M. P. Kane, L. J. Gould, R. Das, M. Jett, B. D. Hodgson, D. Margolis, H. T. Whelan, “Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy," Mitochondrion 4(5 6), 559-567 (2004).

    [10] E. Mester, T. Spiry, B. Szende, J. G. Tota, “Effect of laser rays on wound healing," Am J. Surg. 122(4), 532-535 (1971).

    [11] A. Honmura, A. Ishii, M. Yanase, J. Obata, E. Haruki, “Analgesic effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageenan-induced inflammation," Lasers Surg. Med. 13(4), 463-469 (1993).

    [12] H. T. Whelan, J. F. Connelly, B. D. Hodgson, L. Barbeau, A. C. Post, G. Bullard, E. V. Buchman, M. Kane, N. T. Whelan, A. Warwick, D. Margolis, “NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients," J. Clin. Laser Med. Surg. 20(6), 319-324 (2002).

    [13] A. Bradford, A. Barlow, L. P. Chazot, “Probing the differential effects of infrared light sources IR 1072 and IR 880 on human lymphocytes: Evidence of selective cytoprotection by IR 1072," J. Photochem. Photobiol. B, Biol. 81, 9-14 (2004).

    [14] M. J. Conlan, J. W. Rapley, C. M. Cobb, “Biostimulation of wound healing by low-energy laser irradiation," A Rev. J. Clin. Periodontol. 23, 492-496 (1996).

    [15] M. C. P. Leung, S. C. L. Lo, F. K. W. Siu, K. F. So, “Treatment of experimentally induced transit cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta1," Lasers Surg. Med. 31, 283-288 (2002).

    [16] S. Michalikova, A. Ennaceur, R. van Rensburg, P. L. Chazot, “Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light," Neurobiol. Learn. Mem. 89, 480-488 (2008).

    [17] S. L. Grillo, N. A. Duggett, A. Ennaceur, P. L. Chazot, “Non-invasive infra-red therapy (1072 nm) reduces -amyloid proteins levels in the brain of an Alzheimer's disease mouse model, TASTPM," J. Photochem. Photobiol. B, Biol. 123, 13-22 (2013).

    [18] D. T. Luis, Y. Jin, E. Salim, G. Sebastiano, R. Steve, M. Thomas, S. Jackson, K. Mark, “Transcranial laser therapy attenuates amyloid- peptide neuropathology in amyloid- protein precursor transgenic mice," J. Alzheimer's Dis. 23, 521-535 (2011).

    [19] S. Purushothuman, D. M. Johnstone, C. Nandasena, J. Mitrofanis, J. Stone, “Photobiomodulation with near infrared light mitigates Alzheimer's diseaserelated pathology in cerebral cortex evidence from two transgenic mouse models," Alzheimer's Res. Ther. 6, 2 (2014).

    [20] D. J. Selkoe, “Translating cell biology into therapeutic advances in Alzheimer's disease," Nature 399, A23-A31 (1999).

    [21] H. Wang, J. Liu, Y. Zong, Y. Xu, W. Deng, H. Zhu, Y. Liu, C. Ma, L. Zhang, C. Qin, “miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer's disease targets TGF- type II receptor," Brain Res. 1357, 166-174 (2010).

    [22] Y. Y. Zong, X. Y. Wang, H. L. Wang, Y. L. Liu, L.Huang, C.M.Ma, L. F. Zhang, C. Qin, “Continuous analysis of senile plaque and behaviour in APPswe/PS E9 double-transgenic gene mouse model of alzheimer's disease," Chin. J. Com. Med. 18(9), 8-12(2008).

    [23] R. D' Hooge, P. P. De Deyn, “Applications of the Morris water maze in the study of learning and memory," Brain Research Rev. 36(1), 60-90 (2001).

    [24] R. Morris, “Developments of a water-maze procedure for studying spatial learning in the rat," J. Neurosci. Methods 11, 47-60 (1984).

    [25] C. V. Vorhees, M. T. Williams, “Morris water maze: Procedures for assessing spatial and related forums of learning and memory," Nat. Protoc. 1(2), 848-858 (2006).

    [26] D. R. Howlett, K. Bowler, P. E. Soden, D. Riddell, J. B. Davis, J. C. Richardson, S. A. Burbidge, M. I. Gonzalez, E. A. Irving, A. Lawman, G. Miglio, E. L. Dawson, I. Hussain, “Abeta deposition and related pathology in an APP/PS1 transgenic mouse model of Alzheimer's disease," Histol. Histopathol. 23, 67-76 (2008).

    [27] J. K. Hefendehl, B. M. Wegenast-Braun, C. Liebig, D. Eicke, D. Milford, M. E. Calhoun, S. Kohsaka, M. Eichner, M. Jucker, “Longterm in vivo imaging of beta-amyloid plaque appearance and growth in a mouse model of cerebral beta-amyloidosis," J. Neurosci. 31, 624-629 (2011).

    [28] S. Purushothuman, D. M. Johnstone, C. Nandasena, J. van Eersel, L. M. Ittner, J. Mitrofanis, J. Stone, “Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia," Neurosci. Lett. 591, 155-159 (2015).

    [29] X. J. Wu, A. E. Dmitriev, M. J. Cardoso, A. G. Viers-Costello, R. C. Borke, J. Streeter, J. J. Anders, “810 nm wavelength light: An effective therapy for transected or contused rat spinal cord," Lasers Surg. Med. 41, 36-41 (2009).

    [30] M. Stefani, C. M. Dobson, “Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution," J. Mol. Med. 81, 678-699 (2003).

    [31] A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol. 47(12), 2059-2073 (2002).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Near infra-red light treatment of Alzheimer's disease[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750012
    Download Citation