• Acta Optica Sinica
  • Vol. 45, Issue 8, 0800001 (2025)
Qun Yan1,2,4, Tao Liang1, Kaixin Zhang1,2, Ziming Yao1..., Zhengui Fan1, Wenzong Lai1, Jie Sun1,2,3,** and Enguo Chen1,2,*|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Information Engineering, National and Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, Fujian , China
  • 2Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, Fujian , China
  • 3Quantum Device Physics Laboratory, Chalmers University of Technology, Gothenburg41296, Sweden
  • 4Jinjiang Bogan Electronic Technology Co., Ltd., Quanzhou 362200, Fujian , China
  • show less
    DOI: 10.3788/AOS241921 Cite this Article Set citation alerts
    Qun Yan, Tao Liang, Kaixin Zhang, Ziming Yao, Zhengui Fan, Wenzong Lai, Jie Sun, Enguo Chen. Light Extraction and Shaping Technique for Micro‑LED Displays (Invited)[J]. Acta Optica Sinica, 2025, 45(8): 0800001 Copy Citation Text show less
    References

    [1] Wu T Z, Sher C W, Lin Y et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 8, 1557(2018).

    [2] Anwar A R, Sajjad M T, Ali Johar M et al. Recent progress in micro-LED-based display technologies[J]. Laser & Photonics Reviews, 16, 2100427(2022).

    [3] Day J, Li J, Lie D Y C et al. Full-scale self-emissive blue and green microdisplays based on GaN Micro-LED arrays[J]. Proceedings of SPIE, 8268, 82681X(2012).

    [4] Kim H S, Brueckner E, Song J Z et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 10072-10077(2011).

    [5] Jang H J, Lee J Y, Kwak J et al. Progress of display performances: AR, VR, QLED, OLED, and TFT[J]. Journal of Information Display, 20, 1-8(2019).

    [6] Pavlicek W, Owen J M, Peter M B. Active matrix liquid crystal displays for clinical imaging: comparison with cathode ray tube displays[J]. Journal of Digital Imaging, 13, 155-161(2000).

    [7] Chang N, Choi I, Shim H. DLS: dynamic backlight luminance scaling of liquid crystal display[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12, 837-846(2004).

    [8] Anandan M. Progress of LED backlights for LCDs[J]. Journal of the Society for Information Display, 16, 287-310(2008).

    [9] Schadt M. Milestone in the history of field-effect liquid crystal displays and materials[J]. Japanese Journal of Applied Physics, 48, 03-001(2009).

    [10] Peng F L, Chen H W, Gou F W et al. Analytical equation for the motion picture response time of display devices[J]. Journal of Applied Physics, 121, 023108(2017).

    [11] Li C H, Lu S H, Lin S Y et al. 51‒4: invited paper: ultra-fast moving-picture response-time LCD for virtual reality application[J]. SID Symposium Digest of Technical Papers, 49, 678-680(2018).

    [12] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 51, 913-915(1987).

    [13] Geffroy B, le Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies[J]. Polymer International, 55, 572-582(2006).

    [14] Chen H W, Tan G J, Wu S T. Ambient contrast ratio of LCDs and OLED displays[J]. Optics Express, 25, 33643-33656(2017).

    [15] Ma L, Shao Y F. A brief review of innovative strategies towards structure design of practical electronic display device[J]. Journal of Central South University, 27, 1624-1644(2020).

    [16] Lee J H, Chen C H, Lee P H et al. Blue organic light-emitting diodes: current status, challenges, and future outlook[J]. Journal of Materials Chemistry C, 7, 5874-5888(2019).

    [17] Hsiang E L, Yang Z Y, Yang Q et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays[J]. Journal of the Society for Information Display, 29, 446-465(2021).

    [18] Chen H W, Lee J H, Lin B Y et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives[J]. Light: Science & Applications, 7, 17168(2018).

    [19] Tian P F, McKendry J J D, Gu E D et al. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays[J]. Optics Express, 24, 699-707(2016).

    [20] Wang Z, Shan X Y, Cui X G et al. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display[J]. Journal of Semiconductors, 41, 041606(2020).

    [21] Zhou X J, Tian P F, Sher C W et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 71, 100263(2020).

    [22] Guo Z Y, Liu C Y, Zhao X Y et al. Study on display quality and visual fatigue of OLED and QD-LCD[C]. Russian Federation, 163-166(2023).

    [23] Straub B. Competition of OLED and LCD for automotive applications[C], 32-33(2023).

    [24] Hang S, Chuang C M, Zhang Y H et al. A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs[J]. Journal of Physics D: Applied Physics, 54, 153002(2021).

    [25] Huang Y G, Tan G J, Gou F W et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 27, 387-401(2019).

    [26] Ji H L, Zhang P P, Chen N J et al. Micro-LED display: recent progress and future challenges[J]. Chinese Journal of Liquid Crystals and Displays, 36, 1101-1112(2021).

    [27] Jiang H X, Lin J Y. Nitride micro-LEDs and beyond: a decade progress review[J]. Optics Express, 21, A475-A484(2013).

    [28] Olivier F, Daami A, Dupré L et al. 25‒4: investigation and improvement of 10 μm pixel-pitch GaN-based micro-LED arrays with very high brightness[J]. SID Symposium Digest of Technical Papers, 48, 353-356(2017).

    [29] Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems[J]. Journal of the Society for Information Display, 24, 669-675(2016).

    [30] Takano S, Takahashi K. A high density full color LED display panel on a silicon microreflector[J]. IEEJ Transactions on Sensors and Micromachines, 121, 464-468(2001).

    [31] Jiang H X, Jin S X, Li J et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 78, 1303-1305(2001).

    [32] Zhou L, Zheng H, Zhang S H et al. Research progress of Micro-LED display and its driving technology[J]. Chinese Journal of Liquid Crystals and Displays, 37, 1395-1410(2022).

    [33] Choi H W, Jeon C W, Dawson M D. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique[J]. Journal of Crystal Growth, 268, 527-530(2004).

    [34] Gong Z, Zhang H X, Gu E et al. Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output[J]. IEEE Transactions on Electron Devices, 54, 2650-2658(2007).

    [35] Fan Z Y, Lin J Y, Jiang H X. III-nitride micro-emitter arrays: development and applications[J]. Journal of Physics D: Applied Physics, 41, 094001(2008).

    [36] Gong Z, Gu E, Jin S R et al. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion[J]. Journal of Physics D: Applied Physics, 41, 094002(2008).

    [37] Day J, Li J, Lie D Y C et al. Ⅲ‑Nitride full-scale high-resolution microdisplays[J]. Applied Physics Letters, 99, 031116(2011).

    [38] Tull B R, Basaran Z, Gidony D et al. 26.2: invited paper: high brightness, emissive microdisplay by integration of Ⅲ‑Ⅴ LEDs with thin film silicon transistors[J]. SID Symposium Digest of Technical Papers, 46, 375-377(2015).

    [39] Lin R Z, Liu X Y, Zhou G F et al. InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging[J]. Advanced Optical Materials, 9, 2002211(2021).

    [40] Sun W C, Li F, Tao J et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 14, 5994-5998(2022).

    [41] Li Z Y, Ganapathiappan S, Fan J C et al. QD color conversion microdisplays for near-view application[J]. Information Display, 39, 21-25(2023).

    [42] Yang X, Li J C, Peng X H et al. Super retina TFT based full color microLED display via laser mass transfer[J]. Science China Information Sciences, 67, 210401(2024).

    [43] Zhao P, Zhao H P. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes[J]. Optics Express, 20, A765-A776(2012).

    [44] Jiang X W, Zhao J W, Wu H. Design and optimization of flip-chip light-emitting diode with high light extraction efficiency[J]. Laser & Optoelectronics Progress, 55, 092302(2018).

    [45] Get R, Singh S, Goyal A K et al. Enhancement of light extraction efficiency in InGaN/GaN vertical blue light emitting diodes by surface patterning: design and simulation[J]. Optik, 126, 3004-3006(2015).

    [46] Sun Y J, Trieu S, Yu T J et al. GaN-based LEDs with a high light extraction composite surface structure fabricated by a modified YAG laser lift-off technology and the patterned sapphire substrates[J]. Semiconductor Science and Technology, 26, 085008(2011).

    [47] Bhattacharjee P R. Giving birth to the refined unambiguous statement of Snell’s law in ray optics[J]. Optik, 125, 7258-7261(2014).

    [48] Merano M. Fresnel coefficients of a two-dimensional atomic crystal[J]. Physical Review A, 93, 013832(2016).

    [49] Matioli E, Weisbuch C. Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection[J]. Journal of Applied Physics, 109, 073114(2011).

    [50] Chichibu S F, Abare A C, Minsky M S et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures[J]. Applied Physics Letters, 73, 2006-2008(1998).

    [51] Lalau Keraly C, Kuritzky L, Cochet M et al. Ray tracing for light extraction efficiency (LEE) modeling in nitride LEDs[M]. Ⅲ‑nitride based light emitting diodes and applications, 301-340(2017).

    [52] Kao C C, Kuo H C, Huang H W et al. Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls[J]. IEEE Photonics Technology Letters, 17, 19-21(2005).

    [53] Ryu H Y, Pyo J, Ryu H Y. Light extraction efficiency of GaN-based micro-scale light-emitting diodes investigated using finite-difference time-domain simulation[J]. IEEE Photonics Journal, 12, 1600110(2020).

    [54] Tian M, Yu H B, Memon M H et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall[J]. Optics Letters, 46, 4809-4812(2021).

    [55] Hu X P, Cai J H, Ye Y Y et al. Simulation model of GaN-based micro-LED with high light extraction efficiency[J]. Acta Optica Sinica, 42, 1525001(2022).

    [56] Xu F F, Tao T, Zhang D Q et al. Ultra-small size micro-LEDs with enhanced efficiency for near-eye display[J]. IEEE Electron Device Letters, 45, 1241-1244(2024).

    [57] Wang T, Yang C, Chen J Y et al. Naked-eye light field display technology based on mini/micro light emitting diode panels: a systematic review and meta-analysis[J]. Scientific Reports, 14, 24381(2024).

    [58] Zhang S H, Zheng H, Zhou L et al. Research progress of micro-LED display technology[J]. Crystals, 13, 1001(2023).

    [59] Lin Y Z, Xiao S W. Theoretical analysis of quasi-random roughened surface on light extraction enhancement and optical field properties of GaN LED[J]. Optik, 126, 4625-4627(2015).

    [60] Lee Y J, Lu T C, Kuo H C et al. Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency[J]. Materials Science and Engineering: B, 138, 157-160(2007).

    [61] Kish F A, Steranka F M, DeFevere D C et al. Very high‒efficiency semiconductor wafer‒bonded transparent‒substrate (AlxGa1-x)0.5In0.5P/GaP light‐emitting diodes[J]. Applied Physics Letters, 64, 2839-2841(1994).

    [62] Kish F A, Fletcher R M. AlGalnP light-emitting diodes[M]. Semiconductors and semimetals, 48, 149-226(1997).

    [63] Fujii T, Gao Y, Sharma R et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening[J]. Applied Physics Letters, 84, 855-857(2004).

    [64] Schnitzer I, Yablonovitch E, Caneau C et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures[J]. Applied Physics Letters, 62, 131-133(1993).

    [65] Yablonovitch E. Statistical ray optics[J]. Journal of the Optical Society of America, 72, 899-907(1982).

    [66] Yamada M, Mitani T, Narukawa Y et al. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode[J]. Japanese Journal of Applied Physics, 41, L1431-L1433(2002).

    [67] Krames M R, Ochiai-Holcomb M, Höfler G E et al. High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency[J]. Applied Physics Letters, 75, 2365-2367(1999).

    [68] Krames M R, Shchekin O B, Mueller-Mach R et al. Status and future of high-power light-emitting diodes for solid-state lighting[J]. Journal of Display Technology, 3, 160-175(2007).

    [69] Schmid W, Eberhard F, Jaeger R et al. 45% quantum-efficiency light-emitting diodes with radial outcoupling taper[J]. Proceedings of SPIE, 3938, 90-97(2000).

    [70] Windisch R, Heremans P, Knobloch A et al. Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes[J]. Applied Physics Letters, 74, 2256-2258(1999).

    [71] Zhuang Z, Iida D, Ohkawa K. Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes[J]. Applied Physics Letters, 116, 173501(2020).

    [72] Yu H B, Memon M H, Wang D H et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm[J]. Optics Letters, 46, 3271-3274(2021).

    [73] Kou J Q, Shen C C, Shao H et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 27, A643-A653(2019).

    [74] Park J H, Pristovsek M, Cai W T et al. Interplay of sidewall damage and light extraction efficiency of micro-LEDs[J]. Optics Letters, 47, 2250-2253(2022).

    [75] Bulashevich K A, Karpov S Y. Impact of surface recombination on efficiency of Ⅲ‑nitride light-emitting diodes[J]. Physica Status Solidi‒Rapid Research Letters, 10, 480-484(2016).

    [76] Smith J M, Ley R, Wong M S et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter[J]. Applied Physics Letters, 116, 071102(2020).

    [77] Yu J C, Tao T, Liu B et al. Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs[J]. Crystals, 11, 403(2021).

    [78] Wong M S, Hwang D, Alhassan A I et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 26, 21324-21331(2018).

    [79] Wan H, Tang B, Li N et al. Revealing the role of sidewall orientation in wet chemical etching of GaN-based ultraviolet light-emitting diodes[J]. Nanomaterials, 9, 365(2019).

    [80] Liu H Y, Hsu W C, Chou B Y et al. Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis[J]. IEEE Photonics Technology Letters, 26, 1243-1246(2014).

    [81] So S J, Park C B. Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips[J]. Thin Solid Films, 516, 2031-2034(2008).

    [82] Huang H H, Huang S K, Tsai Y L et al. Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers[J]. Optics Express, 28, 38184-38195(2020).

    [83] Patel M, Jain B, Velpula R T et al. Effect of HfO2 passivation layer on light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes[J]. ECS Transactions, 102, 35-42(2021).

    [84] Wang Y L, Kim H S, Norton D P et al. Dielectric passivation effects on ZnO light emitting diodes[J]. Applied Physics Letters, 92, 112101(2008).

    [85] Chen D B, Wang Z, Hu F C et al. Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AlN passivation layer[J]. Optics Express, 29, 36559-36566(2021).

    [86] Kirilenko P, Iida D, Zhuang Z et al. InGaN-based green micro-LED efficiency enhancement by hydrogen passivation of the p-GaN sidewall[J]. Applied Physics Express, 15, 084003(2022).

    [87] Li Z C, Liu J P, Feng M X et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Applied Physics Letters, 103, 152109(2013).

    [88] Xia R, Harrison I, Larkins E C et al. Spatial inhomogeneity investigation of QW emission in InGaN MQW LEDs[J]. Materials Science and Engineering: B, 93, 234-238(2002).

    [89] van Deurzen L, Ruiz M G, Lee K et al. Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs[J]. Journal of Physics D: Applied Physics, 54, 495106(2021).

    [90] Lu L, Fang C, Fu L et al. Symmetry-protected topological photonic crystal in three dimensions[J]. Nature Physics, 12, 337-340(2016).

    [91] Ding Q G, Li K, Kong F M et al. Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonic crystals[J]. IEEE Journal of Quantum Electronics, 51, 3300109(2015).

    [92] Yu Z G, Zhao L X, Zhu S C et al. Optimization of the nanopore depth to improve the electroluminescence for GaN-based nanoporous green LEDs[J]. Materials Science in Semiconductor Processing, 33, 76-80(2015).

    [93] Zhmakin A I. Enhancement of light extraction from light emitting diodes[J]. Physics Reports, 498, 189-241(2011).

    [94] Kumar P, Son S Y, Singh R et al. Analytical treatment of light extraction from textured surfaces using classical ray optics[J]. Optics Communications, 284, 4874-4878(2011).

    [95] Ma M, Mont F W, Yan X et al. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes[J]. Optics Express, 19, A1135-A1140(2011).

    [96] Huang H W, Lin C H, Huang Z K et al. Improved light output power of GaN-based light-emitting diodes using double photonic quasi-crystal patterns[J]. IEEE Electron Device Letters, 30, 1152-1154(2009).

    [97] Li X X, Yang J L. First-principles design of spintronics materials[J]. National Science Review, 3, 365-381(2016).

    [98] Zhi T, Tao T, Liu B et al. Fabrication and luminescent property of GaN based light-emitting diodes with array nanorods structure[J]. Chinese Journal of Luminescence, 37, 1538-1544(2016).

    [99] Li S D, Wang Z H, Xu J C. Recent progress on quantum efficiency of GaN-based Microt-LED[J]. Nonferrous Metal Materials and Engineering, 44, 73-84(2023).

    [100] Chang S J, Shen C F, Chen W S et al. Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes[J]. Electrochemical and Solid-State Letters, 10, H175-H177(2007).

    [101] Fu X X, Zhang B, Kang X N et al. GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template[J]. Optics Express, 19, A1104-A1108(2011).

    [102] Gao H, Kong F M, Li K et al. Structural optimization of GaN blue light LED with double layers of photonic crystals[J]. Acta Physica Sinica, 61, 127807(2012).

    [103] Matioli E, Weisbuch C. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs[J]. Journal of Physics D: Applied Physics, 43, 354005(2010).

    [104] David A, Moran B, McGroddy K et al. GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth[J]. Applied Physics Letters, 92, 113514(2008).

    [105] Ding Q G, Li K, Kong F M et al. Improving the vertical light-extraction efficiency of GaN-based thin-film flip-chip LEDs with p-side deep-hole photonic crystals[J]. Journal of Display Technology, 10, 909-916(2014).

    [106] Chang Y C, Liou J K, Liu W C. Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) backside reflector[J]. IEEE Electron Device Letters, 34, 777-779(2013).

    [107] Kashima Y, Maeda N, Matsuura E et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer[J]. Applied Physics Express, 11, 012101(2018).

    [108] Lee J, Min K, Park Y et al. Photonic crystal phosphors integrated on a blue LED chip for efficient white light generation[J]. Advanced Materials, 30, 1703506(2018).

    [109] Hsu S Y, Chen C C, Wu G M. Simulation of metallic photonic crystal triangular arrays embedded in GaN light emitting diodes[C], 63-64(2015).

    [110] Nam H, Song K, Ha D et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors[J]. Scientific Reports, 6, 30885(2016).

    [111] Wu S F, Buckley S, Jones A M et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 1, 011001(2014).

    [112] Du P W, Zhang Y E, Rao L et al. Enhancing the light extraction efficiency of AlGaN LED with nanowire photonic crystal and graphene transparent electrode[J]. Superlattices and Microstructures, 133, 106216(2019).

    [113] Chen E G, Zhao M Y, Chen K K et al. Metamaterials for light extraction and shaping of micro-scale light-emitting diodes: from the perspective of one-dimensional and two-dimensional photonic crystals[J]. Optics Express, 31, 18210-18226(2023).

    [114] Wu S L, Xia H B, Xu J H et al. Manipulating luminescence of light emitters by photonic crystals[J]. Advanced Materials, 30, 1803362(2018).

    [115] Yin Y F, Lan W Y, Lin T C et al. High-speed visible light communication using GaN-based light-emitting diodes with photonic crystals[J]. Journal of Lightwave Technology, 35, 258-264(2017).

    [116] Yuan W, Li L H, Lee W B et al. Fabrication of microlens array and its application: a review[J]. Chinese Journal of Mechanical Engineering, 31, 16(2018).

    [117] Krupenkin T, Yang S, Mach P. Tunable liquid microlens[J]. Applied Physics Letters, 82, 316-318(2003).

    [118] Kapitan J M, Minnick G, Watts B P et al. Photografting of surface-assembled hydrogel prepolymers to elastomeric substrates for production of stimuli-responsive microlens arrays[J]. Advanced Functional Materials, 34, 2305711(2024).

    [119] Cha Y G, Na J, Kim H K et al. Microlens array camera with variable apertures for single-shot high dynamic range (HDR) imaging[J]. Optics Express, 31, 29589-29595(2023).

    [120] di Vito A, Amiri P, Bornemann S et al. Design study of a micro illumination platform based on GaN microLED arrays[J]. Applied Optics, 62, 7503-7511(2023).

    [121] Wang X C, Mirmoosa M S, Asadchy V S et al. Metasurface-based realization of photonic time crystals[J]. Science Advances, 9, eadg7541(2023).

    [122] Wu Y Y, Wang Y R, Liu X F et al. Effects of layered and metasurface structures on the electromagnetic wave absorption performance of cementitious materials[J]. Journal of Building Engineering, 72, 106719(2023).

    [123] Cai Q, Zhi T, You H F et al. Ultrahigh sensitivity solar-blind UV detection via multistage-concentric-annulus architecture metasurface[J]. Advanced Optical Materials, 12, 2301333(2024).

    [124] Al-Moathin A, Zhong M Y, Al-Taai Q et al. Characterization of a compact wideband microwave metasurface lens for cryogenic applications[C](2023).

    [125] Yan Q, Gao C M, Sheng Y M et al. Optimization design of LED collimating lens[J]. Laser & Optoelectronics Progress, 50, 112203(2013).

    [126] Hao J, Liu H, Wang Y et al. Local optimization of freeform surface lens for uniform illumination of LED[J]. Laser & Optoelectronics Progress, 50, 072202(2013).

    [127] Hao J, Liu H, Sun Q et al. Optimization of freeform surface lens for collimating illumination of LED[J]. Laser & Optoelectronics Progress, 51, 032302(2014).

    [128] Qin H, Feng D T, Liu B et al. Design method of collimating aspheric lenses based on PSO algorithm[J]. Infrared and Laser Engineering, 44, 1811-1817(2015).

    [129] Zhao H, Li C G, Chen Z T et al. Design of collimating lens with uniform illumination for LED based on double freeform surface[J]. Acta Optica Sinica, 37, 0422001(2017).

    [130] Le N Y, Shi Z W, Shi X G. Design of a reflect and refract LED collimating lens[J]. Optoelectronic Technology, 38, 258-261, 281(2018).

    [131] Chong W C, Ou F, Xu Q C et al. 31.3: low optical crosstalk micro-LED micro-display with semi-sphere micro-lens for light collimation[J]. SID Symposium Digest of Technical Papers, 49, 339-342(2018).

    [132] Motoyama Y, Sugiyama K, Tanaka H et al. High-efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 27, 354-360(2019).

    [133] Yan S W, Liu Y B, Wang R N et al. P-9.10: design and fabrication of micro-lens array based on micro-LED projector[J]. SID Symposium Digest of Technical Papers, 49, 688-691(2018).

    [134] Lee J H, Zhu X Y, Lin Y H et al. 7.2: tandem OLED and reflective LCD with a microlens array[J]. SID Symposium Digest of Technical Papers, 37, 68-70(2006).

    [135] Qin Z, Wu J Y, Chou P Y et al. 68‒1: investigation on defocusing-induced accommodation shift in microlens array-based near-eye light field displays[J]. SID Symposium Digest of Technical Papers, 51, 1009-1012(2020).

    [136] Li Y, Jiang H N, Yan Y G et al. Highly efficient and ultra-compact micro-LED pico-projector based on a microlens array[J]. Journal of the Society for Information Display, 31, 483-493(2023).

    [137] Chen E G, Yao Z M, Fan Z G et al. Collimated LED array with mushroom-cap encapsulation for near-eye display projection engine[J]. IEEE Journal of Selected Topics in Quantum Electronics, 30, 2000410(2024).

    [138] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, 58, 594201(2015).

    [139] Zhao Z Y, Pu M B, Wang Y Q et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 44, 129-139, 250(2017).

    [140] Xu T, Wang C T, Du C L et al. Plasmonic beam deflector[J]. Optics Express, 16, 4753-4759(2008).

    [141] Parazzoli C G, Greegor R B, Li K et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 90, 107401(2003).

    [142] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [143] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).

    [144] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [145] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, 70(2013).

    [146] Aieta F, Kats M A, Genevet P et al. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [147] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).

    [148] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [149] Jin X, Wang M, Zhou T F et al. GaN based metalens for micro imaging[J]. Optics and Precision Engineering, 26, 2917-2922(2018).

    [150] Khaidarov E, Liu Z T, Paniagua-Domínguez R et al. Control of LED emission with functional dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900235(2020).

    [151] Park Y, Kim H, Lee J Y et al. Direction control of colloidal quantum dot emission using dielectric metasurfaces[J]. Nanophotonics, 9, 1023-1030(2020).

    [152] Huang J P, Hu Z L, Gao X et al. Unidirectional-emitting GaN-based micro-LED for 3D display[J]. Optics Letters, 46, 3476-3479(2021).

    [153] Gao X, Xu Y, Huang J P et al. Circularly polarized light emission from a GaN micro-LED integrated with functional metasurfaces for 3D display[J]. Optics Letters, 46, 2666-2669(2021).

    [154] Mao P, Liu C X, Li X Y et al. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs[J]. Light: Science & Applications, 10, 180(2021).

    [155] Tang J X, Gong Y D, Pang K. Two-dimensional metasurface: application and research progress of metalenses[J]. Laser & Optoelectronics Progress, 60, 2100004(2023).

    [156] Liu Z Y, Ren K L, Dai G Y et al. A review on micro-LED display integrating metasurface structures[J]. Micromachines, 14, 1354(2023).

    [157] Chen E G, Fan Z G, Zhang K X et al. Broadband beam collimation metasurface for full-color micro-LED displays[J]. Optics Express, 32, 10252-10264(2024).

    [158] Schubert E F, Hunt N E, Micovic M et al. Highly efficient light-emitting diodes with microcavities[J]. Science, 265, 943-945(1994).

    [159] Michelotti F, Roma G, Belardini A et al. Micro-cavity organic light emitting diodes for biochip applications[J]. Journal of Non-Crystalline Solids, 352, 2476-2479(2006).

    [160] Chen Y, Huang L R, Zhu S S. Monolithic white LED based on AlxGa1-xN/InyGa1-yN DBR resonant-cavity[J]. Journal of Semiconductors, 30, 014005(2009).

    [161] Tong X, Han K, Shen X P et al. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator[J]. Acta Physica Sinica, 60, 064217(2011).

    [162] Hu X L, Qi Z Y, Huang H M et al. Optimization of resonant-cavity effect and photonic crystals structure for high light extraction efficiency UV-A vertical-structure LEDs[J]. Chinese Journal of Luminescence, 37, 836-844(2016).

    [163] Hu Y L, Liu D L, Wang B et al. Characteristics of light extraction for surface-microcavity photonic crystal LED[J]. Acta Optica Sinica, 37, 0623004(2017).

    [164] Hamaguchi T, Tanaka M, Nakajima H. A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation[J]. Japanese Journal of Applied Physics, 58, SC0806(2019).

    [165] Li J J, Cao H K, Deng J et al. Realization of 655 nm micro-RCLED working at low driving current for micro-displays[J]. Acta Optica Sinica, 40, 1526002(2020).

    [166] Chen L N, Qin Z Y, Chen S M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities[J]. Small Methods, 6, 2101090(2022).

    [167] Huang J P, Tang M L, Zhou B R et al. GaN-based resonant cavity micro-LEDs for AR application[J]. Applied Physics Letters, 121, 201104(2022).

    [168] Wang T, Zhang X D, Liu Y et al. GaN-on-Si micro resonant-cavity light-emitting diodes with dielectric and metal mirrors[J]. Optical Materials, 143, 114096(2023).

    [169] Kim J Y, Lee S Y, Cho K H et al. Dual-microcavity technology for red, green, and blue electroluminescent devices[J]. Advanced Functional Materials, 33, 2305528(2023).

    [170] Qu J L, Liu P, Gan X T et al. Silicon photoelectron chip integrated active devices based on colloidal quantum dots (invited)[J]. Acta Optica Sinica, 44, 1513011(2024).

    [171] Pan Y J, Lin L H, Yang K Y et al. Patterning technology of high-resolution quantum dots[J]. Acta Optica Sinica, 44, 0200004(2024).

    Qun Yan, Tao Liang, Kaixin Zhang, Ziming Yao, Zhengui Fan, Wenzong Lai, Jie Sun, Enguo Chen. Light Extraction and Shaping Technique for Micro‑LED Displays (Invited)[J]. Acta Optica Sinica, 2025, 45(8): 0800001
    Download Citation