[1] Wu T Z, Sher C W, Lin Y et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 8, 1557(2018).
[2] Anwar A R, Sajjad M T, Ali Johar M et al. Recent progress in micro-LED-based display technologies[J]. Laser & Photonics Reviews, 16, 2100427(2022).
[3] Day J, Li J, Lie D Y C et al. Full-scale self-emissive blue and green microdisplays based on GaN Micro-LED arrays[J]. Proceedings of SPIE, 8268, 82681X(2012).
[4] Kim H S, Brueckner E, Song J Z et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 10072-10077(2011).
[5] Jang H J, Lee J Y, Kwak J et al. Progress of display performances: AR, VR, QLED, OLED, and TFT[J]. Journal of Information Display, 20, 1-8(2019).
[6] Pavlicek W, Owen J M, Peter M B. Active matrix liquid crystal displays for clinical imaging: comparison with cathode ray tube displays[J]. Journal of Digital Imaging, 13, 155-161(2000).
[7] Chang N, Choi I, Shim H. DLS: dynamic backlight luminance scaling of liquid crystal display[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12, 837-846(2004).
[8] Anandan M. Progress of LED backlights for LCDs[J]. Journal of the Society for Information Display, 16, 287-310(2008).
[9] Schadt M. Milestone in the history of field-effect liquid crystal displays and materials[J]. Japanese Journal of Applied Physics, 48, 03-001(2009).
[10] Peng F L, Chen H W, Gou F W et al. Analytical equation for the motion picture response time of display devices[J]. Journal of Applied Physics, 121, 023108(2017).
[11] Li C H, Lu S H, Lin S Y et al. 51‒4: invited paper: ultra-fast moving-picture response-time LCD for virtual reality application[J]. SID Symposium Digest of Technical Papers, 49, 678-680(2018).
[12] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 51, 913-915(1987).
[13] Geffroy B, le Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies[J]. Polymer International, 55, 572-582(2006).
[14] Chen H W, Tan G J, Wu S T. Ambient contrast ratio of LCDs and OLED displays[J]. Optics Express, 25, 33643-33656(2017).
[15] Ma L, Shao Y F. A brief review of innovative strategies towards structure design of practical electronic display device[J]. Journal of Central South University, 27, 1624-1644(2020).
[16] Lee J H, Chen C H, Lee P H et al. Blue organic light-emitting diodes: current status, challenges, and future outlook[J]. Journal of Materials Chemistry C, 7, 5874-5888(2019).
[17] Hsiang E L, Yang Z Y, Yang Q et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays[J]. Journal of the Society for Information Display, 29, 446-465(2021).
[18] Chen H W, Lee J H, Lin B Y et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives[J]. Light: Science & Applications, 7, 17168(2018).
[19] Tian P F, McKendry J J D, Gu E D et al. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays[J]. Optics Express, 24, 699-707(2016).
[20] Wang Z, Shan X Y, Cui X G et al. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display[J]. Journal of Semiconductors, 41, 041606(2020).
[21] Zhou X J, Tian P F, Sher C W et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 71, 100263(2020).
[22] Guo Z Y, Liu C Y, Zhao X Y et al. Study on display quality and visual fatigue of OLED and QD-LCD[C]. Russian Federation, 163-166(2023).
[23] Straub B. Competition of OLED and LCD for automotive applications[C], 32-33(2023).
[24] Hang S, Chuang C M, Zhang Y H et al. A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs[J]. Journal of Physics D: Applied Physics, 54, 153002(2021).
[25] Huang Y G, Tan G J, Gou F W et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 27, 387-401(2019).
[26] Ji H L, Zhang P P, Chen N J et al. Micro-LED display: recent progress and future challenges[J]. Chinese Journal of Liquid Crystals and Displays, 36, 1101-1112(2021).
[27] Jiang H X, Lin J Y. Nitride micro-LEDs and beyond: a decade progress review[J]. Optics Express, 21, A475-A484(2013).
[28] Olivier F, Daami A, Dupré L et al. 25‒4: investigation and improvement of 10 μm pixel-pitch GaN-based micro-LED arrays with very high brightness[J]. SID Symposium Digest of Technical Papers, 48, 353-356(2017).
[29] Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems[J]. Journal of the Society for Information Display, 24, 669-675(2016).
[30] Takano S, Takahashi K. A high density full color LED display panel on a silicon microreflector[J]. IEEJ Transactions on Sensors and Micromachines, 121, 464-468(2001).
[31] Jiang H X, Jin S X, Li J et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 78, 1303-1305(2001).
[32] Zhou L, Zheng H, Zhang S H et al. Research progress of Micro-LED display and its driving technology[J]. Chinese Journal of Liquid Crystals and Displays, 37, 1395-1410(2022).
[33] Choi H W, Jeon C W, Dawson M D. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique[J]. Journal of Crystal Growth, 268, 527-530(2004).
[34] Gong Z, Zhang H X, Gu E et al. Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output[J]. IEEE Transactions on Electron Devices, 54, 2650-2658(2007).
[35] Fan Z Y, Lin J Y, Jiang H X. III-nitride micro-emitter arrays: development and applications[J]. Journal of Physics D: Applied Physics, 41, 094001(2008).
[36] Gong Z, Gu E, Jin S R et al. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion[J]. Journal of Physics D: Applied Physics, 41, 094002(2008).
[37] Day J, Li J, Lie D Y C et al. Ⅲ‑Nitride full-scale high-resolution microdisplays[J]. Applied Physics Letters, 99, 031116(2011).
[38] Tull B R, Basaran Z, Gidony D et al. 26.2: invited paper: high brightness, emissive microdisplay by integration of Ⅲ‑Ⅴ LEDs with thin film silicon transistors[J]. SID Symposium Digest of Technical Papers, 46, 375-377(2015).
[39] Lin R Z, Liu X Y, Zhou G F et al. InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging[J]. Advanced Optical Materials, 9, 2002211(2021).
[40] Sun W C, Li F, Tao J et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm[J]. Nanoscale, 14, 5994-5998(2022).
[41] Li Z Y, Ganapathiappan S, Fan J C et al. QD color conversion microdisplays for near-view application[J]. Information Display, 39, 21-25(2023).
[42] Yang X, Li J C, Peng X H et al. Super retina TFT based full color microLED display via laser mass transfer[J]. Science China Information Sciences, 67, 210401(2024).
[43] Zhao P, Zhao H P. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes[J]. Optics Express, 20, A765-A776(2012).
[44] Jiang X W, Zhao J W, Wu H. Design and optimization of flip-chip light-emitting diode with high light extraction efficiency[J]. Laser & Optoelectronics Progress, 55, 092302(2018).
[45] Get R, Singh S, Goyal A K et al. Enhancement of light extraction efficiency in InGaN/GaN vertical blue light emitting diodes by surface patterning: design and simulation[J]. Optik, 126, 3004-3006(2015).
[46] Sun Y J, Trieu S, Yu T J et al. GaN-based LEDs with a high light extraction composite surface structure fabricated by a modified YAG laser lift-off technology and the patterned sapphire substrates[J]. Semiconductor Science and Technology, 26, 085008(2011).
[47] Bhattacharjee P R. Giving birth to the refined unambiguous statement of Snell’s law in ray optics[J]. Optik, 125, 7258-7261(2014).
[48] Merano M. Fresnel coefficients of a two-dimensional atomic crystal[J]. Physical Review A, 93, 013832(2016).
[49] Matioli E, Weisbuch C. Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection[J]. Journal of Applied Physics, 109, 073114(2011).
[50] Chichibu S F, Abare A C, Minsky M S et al. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures[J]. Applied Physics Letters, 73, 2006-2008(1998).
[51] Lalau Keraly C, Kuritzky L, Cochet M et al. Ray tracing for light extraction efficiency (LEE) modeling in nitride LEDs[M]. Ⅲ‑nitride based light emitting diodes and applications, 301-340(2017).
[52] Kao C C, Kuo H C, Huang H W et al. Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls[J]. IEEE Photonics Technology Letters, 17, 19-21(2005).
[53] Ryu H Y, Pyo J, Ryu H Y. Light extraction efficiency of GaN-based micro-scale light-emitting diodes investigated using finite-difference time-domain simulation[J]. IEEE Photonics Journal, 12, 1600110(2020).
[54] Tian M, Yu H B, Memon M H et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall[J]. Optics Letters, 46, 4809-4812(2021).
[55] Hu X P, Cai J H, Ye Y Y et al. Simulation model of GaN-based micro-LED with high light extraction efficiency[J]. Acta Optica Sinica, 42, 1525001(2022).
[56] Xu F F, Tao T, Zhang D Q et al. Ultra-small size micro-LEDs with enhanced efficiency for near-eye display[J]. IEEE Electron Device Letters, 45, 1241-1244(2024).
[57] Wang T, Yang C, Chen J Y et al. Naked-eye light field display technology based on mini/micro light emitting diode panels: a systematic review and meta-analysis[J]. Scientific Reports, 14, 24381(2024).
[58] Zhang S H, Zheng H, Zhou L et al. Research progress of micro-LED display technology[J]. Crystals, 13, 1001(2023).
[59] Lin Y Z, Xiao S W. Theoretical analysis of quasi-random roughened surface on light extraction enhancement and optical field properties of GaN LED[J]. Optik, 126, 4625-4627(2015).
[60] Lee Y J, Lu T C, Kuo H C et al. Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency[J]. Materials Science and Engineering: B, 138, 157-160(2007).
[61] Kish F A, Steranka F M, DeFevere D C et al. Very high‒efficiency semiconductor wafer‒bonded transparent‒substrate (AlxGa1-x)0.5In0.5P/GaP light‐emitting diodes[J]. Applied Physics Letters, 64, 2839-2841(1994).
[62] Kish F A, Fletcher R M. AlGalnP light-emitting diodes[M]. Semiconductors and semimetals, 48, 149-226(1997).
[63] Fujii T, Gao Y, Sharma R et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening[J]. Applied Physics Letters, 84, 855-857(2004).
[64] Schnitzer I, Yablonovitch E, Caneau C et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures[J]. Applied Physics Letters, 62, 131-133(1993).
[65] Yablonovitch E. Statistical ray optics[J]. Journal of the Optical Society of America, 72, 899-907(1982).
[66] Yamada M, Mitani T, Narukawa Y et al. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode[J]. Japanese Journal of Applied Physics, 41, L1431-L1433(2002).
[67] Krames M R, Ochiai-Holcomb M, Höfler G E et al. High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency[J]. Applied Physics Letters, 75, 2365-2367(1999).
[68] Krames M R, Shchekin O B, Mueller-Mach R et al. Status and future of high-power light-emitting diodes for solid-state lighting[J]. Journal of Display Technology, 3, 160-175(2007).
[69] Schmid W, Eberhard F, Jaeger R et al. 45% quantum-efficiency light-emitting diodes with radial outcoupling taper[J]. Proceedings of SPIE, 3938, 90-97(2000).
[70] Windisch R, Heremans P, Knobloch A et al. Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes[J]. Applied Physics Letters, 74, 2256-2258(1999).
[71] Zhuang Z, Iida D, Ohkawa K. Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes[J]. Applied Physics Letters, 116, 173501(2020).
[72] Yu H B, Memon M H, Wang D H et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm[J]. Optics Letters, 46, 3271-3274(2021).
[73] Kou J Q, Shen C C, Shao H et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 27, A643-A653(2019).
[74] Park J H, Pristovsek M, Cai W T et al. Interplay of sidewall damage and light extraction efficiency of micro-LEDs[J]. Optics Letters, 47, 2250-2253(2022).
[75] Bulashevich K A, Karpov S Y. Impact of surface recombination on efficiency of Ⅲ‑nitride light-emitting diodes[J]. Physica Status Solidi‒Rapid Research Letters, 10, 480-484(2016).
[76] Smith J M, Ley R, Wong M S et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter[J]. Applied Physics Letters, 116, 071102(2020).
[77] Yu J C, Tao T, Liu B et al. Investigations of sidewall passivation technology on the optical performance for smaller size GaN-based micro-LEDs[J]. Crystals, 11, 403(2021).
[78] Wong M S, Hwang D, Alhassan A I et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 26, 21324-21331(2018).
[79] Wan H, Tang B, Li N et al. Revealing the role of sidewall orientation in wet chemical etching of GaN-based ultraviolet light-emitting diodes[J]. Nanomaterials, 9, 365(2019).
[80] Liu H Y, Hsu W C, Chou B Y et al. Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis[J]. IEEE Photonics Technology Letters, 26, 1243-1246(2014).
[81] So S J, Park C B. Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips[J]. Thin Solid Films, 516, 2031-2034(2008).
[82] Huang H H, Huang S K, Tsai Y L et al. Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers[J]. Optics Express, 28, 38184-38195(2020).
[83] Patel M, Jain B, Velpula R T et al. Effect of HfO2 passivation layer on light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes[J]. ECS Transactions, 102, 35-42(2021).
[84] Wang Y L, Kim H S, Norton D P et al. Dielectric passivation effects on ZnO light emitting diodes[J]. Applied Physics Letters, 92, 112101(2008).
[85] Chen D B, Wang Z, Hu F C et al. Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AlN passivation layer[J]. Optics Express, 29, 36559-36566(2021).
[86] Kirilenko P, Iida D, Zhuang Z et al. InGaN-based green micro-LED efficiency enhancement by hydrogen passivation of the p-GaN sidewall[J]. Applied Physics Express, 15, 084003(2022).
[87] Li Z C, Liu J P, Feng M X et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Applied Physics Letters, 103, 152109(2013).
[88] Xia R, Harrison I, Larkins E C et al. Spatial inhomogeneity investigation of QW emission in InGaN MQW LEDs[J]. Materials Science and Engineering: B, 93, 234-238(2002).
[89] van Deurzen L, Ruiz M G, Lee K et al. Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs[J]. Journal of Physics D: Applied Physics, 54, 495106(2021).
[90] Lu L, Fang C, Fu L et al. Symmetry-protected topological photonic crystal in three dimensions[J]. Nature Physics, 12, 337-340(2016).
[91] Ding Q G, Li K, Kong F M et al. Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonic crystals[J]. IEEE Journal of Quantum Electronics, 51, 3300109(2015).
[92] Yu Z G, Zhao L X, Zhu S C et al. Optimization of the nanopore depth to improve the electroluminescence for GaN-based nanoporous green LEDs[J]. Materials Science in Semiconductor Processing, 33, 76-80(2015).
[93] Zhmakin A I. Enhancement of light extraction from light emitting diodes[J]. Physics Reports, 498, 189-241(2011).
[94] Kumar P, Son S Y, Singh R et al. Analytical treatment of light extraction from textured surfaces using classical ray optics[J]. Optics Communications, 284, 4874-4878(2011).
[95] Ma M, Mont F W, Yan X et al. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes[J]. Optics Express, 19, A1135-A1140(2011).
[96] Huang H W, Lin C H, Huang Z K et al. Improved light output power of GaN-based light-emitting diodes using double photonic quasi-crystal patterns[J]. IEEE Electron Device Letters, 30, 1152-1154(2009).
[97] Li X X, Yang J L. First-principles design of spintronics materials[J]. National Science Review, 3, 365-381(2016).
[98] Zhi T, Tao T, Liu B et al. Fabrication and luminescent property of GaN based light-emitting diodes with array nanorods structure[J]. Chinese Journal of Luminescence, 37, 1538-1544(2016).
[99] Li S D, Wang Z H, Xu J C. Recent progress on quantum efficiency of GaN-based Microt-LED[J]. Nonferrous Metal Materials and Engineering, 44, 73-84(2023).
[100] Chang S J, Shen C F, Chen W S et al. Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes[J]. Electrochemical and Solid-State Letters, 10, H175-H177(2007).
[101] Fu X X, Zhang B, Kang X N et al. GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template[J]. Optics Express, 19, A1104-A1108(2011).
[102] Gao H, Kong F M, Li K et al. Structural optimization of GaN blue light LED with double layers of photonic crystals[J]. Acta Physica Sinica, 61, 127807(2012).
[103] Matioli E, Weisbuch C. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs[J]. Journal of Physics D: Applied Physics, 43, 354005(2010).
[104] David A, Moran B, McGroddy K et al. GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth[J]. Applied Physics Letters, 92, 113514(2008).
[105] Ding Q G, Li K, Kong F M et al. Improving the vertical light-extraction efficiency of GaN-based thin-film flip-chip LEDs with p-side deep-hole photonic crystals[J]. Journal of Display Technology, 10, 909-916(2014).
[106] Chang Y C, Liou J K, Liu W C. Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) backside reflector[J]. IEEE Electron Device Letters, 34, 777-779(2013).
[107] Kashima Y, Maeda N, Matsuura E et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer[J]. Applied Physics Express, 11, 012101(2018).
[108] Lee J, Min K, Park Y et al. Photonic crystal phosphors integrated on a blue LED chip for efficient white light generation[J]. Advanced Materials, 30, 1703506(2018).
[109] Hsu S Y, Chen C C, Wu G M. Simulation of metallic photonic crystal triangular arrays embedded in GaN light emitting diodes[C], 63-64(2015).
[110] Nam H, Song K, Ha D et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors[J]. Scientific Reports, 6, 30885(2016).
[111] Wu S F, Buckley S, Jones A M et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 1, 011001(2014).
[112] Du P W, Zhang Y E, Rao L et al. Enhancing the light extraction efficiency of AlGaN LED with nanowire photonic crystal and graphene transparent electrode[J]. Superlattices and Microstructures, 133, 106216(2019).
[113] Chen E G, Zhao M Y, Chen K K et al. Metamaterials for light extraction and shaping of micro-scale light-emitting diodes: from the perspective of one-dimensional and two-dimensional photonic crystals[J]. Optics Express, 31, 18210-18226(2023).
[114] Wu S L, Xia H B, Xu J H et al. Manipulating luminescence of light emitters by photonic crystals[J]. Advanced Materials, 30, 1803362(2018).
[115] Yin Y F, Lan W Y, Lin T C et al. High-speed visible light communication using GaN-based light-emitting diodes with photonic crystals[J]. Journal of Lightwave Technology, 35, 258-264(2017).
[116] Yuan W, Li L H, Lee W B et al. Fabrication of microlens array and its application: a review[J]. Chinese Journal of Mechanical Engineering, 31, 16(2018).
[117] Krupenkin T, Yang S, Mach P. Tunable liquid microlens[J]. Applied Physics Letters, 82, 316-318(2003).
[118] Kapitan J M, Minnick G, Watts B P et al. Photografting of surface-assembled hydrogel prepolymers to elastomeric substrates for production of stimuli-responsive microlens arrays[J]. Advanced Functional Materials, 34, 2305711(2024).
[119] Cha Y G, Na J, Kim H K et al. Microlens array camera with variable apertures for single-shot high dynamic range (HDR) imaging[J]. Optics Express, 31, 29589-29595(2023).
[120] di Vito A, Amiri P, Bornemann S et al. Design study of a micro illumination platform based on GaN microLED arrays[J]. Applied Optics, 62, 7503-7511(2023).
[121] Wang X C, Mirmoosa M S, Asadchy V S et al. Metasurface-based realization of photonic time crystals[J]. Science Advances, 9, eadg7541(2023).
[122] Wu Y Y, Wang Y R, Liu X F et al. Effects of layered and metasurface structures on the electromagnetic wave absorption performance of cementitious materials[J]. Journal of Building Engineering, 72, 106719(2023).
[123] Cai Q, Zhi T, You H F et al. Ultrahigh sensitivity solar-blind UV detection via multistage-concentric-annulus architecture metasurface[J]. Advanced Optical Materials, 12, 2301333(2024).
[124] Al-Moathin A, Zhong M Y, Al-Taai Q et al. Characterization of a compact wideband microwave metasurface lens for cryogenic applications[C](2023).
[125] Yan Q, Gao C M, Sheng Y M et al. Optimization design of LED collimating lens[J]. Laser & Optoelectronics Progress, 50, 112203(2013).
[126] Hao J, Liu H, Wang Y et al. Local optimization of freeform surface lens for uniform illumination of LED[J]. Laser & Optoelectronics Progress, 50, 072202(2013).
[127] Hao J, Liu H, Sun Q et al. Optimization of freeform surface lens for collimating illumination of LED[J]. Laser & Optoelectronics Progress, 51, 032302(2014).
[128] Qin H, Feng D T, Liu B et al. Design method of collimating aspheric lenses based on PSO algorithm[J]. Infrared and Laser Engineering, 44, 1811-1817(2015).
[129] Zhao H, Li C G, Chen Z T et al. Design of collimating lens with uniform illumination for LED based on double freeform surface[J]. Acta Optica Sinica, 37, 0422001(2017).
[130] Le N Y, Shi Z W, Shi X G. Design of a reflect and refract LED collimating lens[J]. Optoelectronic Technology, 38, 258-261, 281(2018).
[131] Chong W C, Ou F, Xu Q C et al. 31.3: low optical crosstalk micro-LED micro-display with semi-sphere micro-lens for light collimation[J]. SID Symposium Digest of Technical Papers, 49, 339-342(2018).
[132] Motoyama Y, Sugiyama K, Tanaka H et al. High-efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 27, 354-360(2019).
[133] Yan S W, Liu Y B, Wang R N et al. P-9.10: design and fabrication of micro-lens array based on micro-LED projector[J]. SID Symposium Digest of Technical Papers, 49, 688-691(2018).
[134] Lee J H, Zhu X Y, Lin Y H et al. 7.2: tandem OLED and reflective LCD with a microlens array[J]. SID Symposium Digest of Technical Papers, 37, 68-70(2006).
[135] Qin Z, Wu J Y, Chou P Y et al. 68‒1: investigation on defocusing-induced accommodation shift in microlens array-based near-eye light field displays[J]. SID Symposium Digest of Technical Papers, 51, 1009-1012(2020).
[136] Li Y, Jiang H N, Yan Y G et al. Highly efficient and ultra-compact micro-LED pico-projector based on a microlens array[J]. Journal of the Society for Information Display, 31, 483-493(2023).
[137] Chen E G, Yao Z M, Fan Z G et al. Collimated LED array with mushroom-cap encapsulation for near-eye display projection engine[J]. IEEE Journal of Selected Topics in Quantum Electronics, 30, 2000410(2024).
[138] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, 58, 594201(2015).
[139] Zhao Z Y, Pu M B, Wang Y Q et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 44, 129-139, 250(2017).
[140] Xu T, Wang C T, Du C L et al. Plasmonic beam deflector[J]. Optics Express, 16, 4753-4759(2008).
[141] Parazzoli C G, Greegor R B, Li K et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 90, 107401(2003).
[142] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[143] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).
[144] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).
[145] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, 70(2013).
[146] Aieta F, Kats M A, Genevet P et al. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).
[147] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).
[148] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).
[149] Jin X, Wang M, Zhou T F et al. GaN based metalens for micro imaging[J]. Optics and Precision Engineering, 26, 2917-2922(2018).
[150] Khaidarov E, Liu Z T, Paniagua-Domínguez R et al. Control of LED emission with functional dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900235(2020).
[151] Park Y, Kim H, Lee J Y et al. Direction control of colloidal quantum dot emission using dielectric metasurfaces[J]. Nanophotonics, 9, 1023-1030(2020).
[152] Huang J P, Hu Z L, Gao X et al. Unidirectional-emitting GaN-based micro-LED for 3D display[J]. Optics Letters, 46, 3476-3479(2021).
[153] Gao X, Xu Y, Huang J P et al. Circularly polarized light emission from a GaN micro-LED integrated with functional metasurfaces for 3D display[J]. Optics Letters, 46, 2666-2669(2021).
[154] Mao P, Liu C X, Li X Y et al. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs[J]. Light: Science & Applications, 10, 180(2021).
[155] Tang J X, Gong Y D, Pang K. Two-dimensional metasurface: application and research progress of metalenses[J]. Laser & Optoelectronics Progress, 60, 2100004(2023).
[156] Liu Z Y, Ren K L, Dai G Y et al. A review on micro-LED display integrating metasurface structures[J]. Micromachines, 14, 1354(2023).
[157] Chen E G, Fan Z G, Zhang K X et al. Broadband beam collimation metasurface for full-color micro-LED displays[J]. Optics Express, 32, 10252-10264(2024).
[158] Schubert E F, Hunt N E, Micovic M et al. Highly efficient light-emitting diodes with microcavities[J]. Science, 265, 943-945(1994).
[159] Michelotti F, Roma G, Belardini A et al. Micro-cavity organic light emitting diodes for biochip applications[J]. Journal of Non-Crystalline Solids, 352, 2476-2479(2006).
[160] Chen Y, Huang L R, Zhu S S. Monolithic white LED based on AlxGa1-xN/InyGa1-yN DBR resonant-cavity[J]. Journal of Semiconductors, 30, 014005(2009).
[161] Tong X, Han K, Shen X P et al. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator[J]. Acta Physica Sinica, 60, 064217(2011).
[162] Hu X L, Qi Z Y, Huang H M et al. Optimization of resonant-cavity effect and photonic crystals structure for high light extraction efficiency UV-A vertical-structure LEDs[J]. Chinese Journal of Luminescence, 37, 836-844(2016).
[163] Hu Y L, Liu D L, Wang B et al. Characteristics of light extraction for surface-microcavity photonic crystal LED[J]. Acta Optica Sinica, 37, 0623004(2017).
[164] Hamaguchi T, Tanaka M, Nakajima H. A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation[J]. Japanese Journal of Applied Physics, 58, SC0806(2019).
[165] Li J J, Cao H K, Deng J et al. Realization of 655 nm micro-RCLED working at low driving current for micro-displays[J]. Acta Optica Sinica, 40, 1526002(2020).
[166] Chen L N, Qin Z Y, Chen S M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities[J]. Small Methods, 6, 2101090(2022).
[167] Huang J P, Tang M L, Zhou B R et al. GaN-based resonant cavity micro-LEDs for AR application[J]. Applied Physics Letters, 121, 201104(2022).
[168] Wang T, Zhang X D, Liu Y et al. GaN-on-Si micro resonant-cavity light-emitting diodes with dielectric and metal mirrors[J]. Optical Materials, 143, 114096(2023).
[169] Kim J Y, Lee S Y, Cho K H et al. Dual-microcavity technology for red, green, and blue electroluminescent devices[J]. Advanced Functional Materials, 33, 2305528(2023).
[170] Qu J L, Liu P, Gan X T et al. Silicon photoelectron chip integrated active devices based on colloidal quantum dots (invited)[J]. Acta Optica Sinica, 44, 1513011(2024).
[171] Pan Y J, Lin L H, Yang K Y et al. Patterning technology of high-resolution quantum dots[J]. Acta Optica Sinica, 44, 0200004(2024).